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Abstract

The N400 event-related brain potential is elicited by each word in a sentence and offers
an important window into the mechanisms of real-time language comprehension.
Since the 1980s, studies investigating the N400 have expanded our understanding of
how bottom-up linguistic inputs interact with top-down contextual constraints.
More recently, a growing body of computational modeling research has aimed to
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formalize theoretical accounts of the N400 to better understand the neural and func-
tional basis of this component. Here, we provide a comprehensive review of this liter-
ature. We discuss “word-level” models that focus on the N400’s sensitivity to lexical
factors and simple primingmanipulations, as well as more recent sentence-level models
that explain its sensitivity to broader context. We discuss each model’s insights and lim-
itations in relation to a set of cognitive and biological constraints that have informed our
understanding of language comprehension and the N400 over the past few decades.
We then review a novel computational model of the N400 that is based on the princi-
ples of predictive coding, which can accurately simulate both word-level and
sentence-level phenomena. In this predictive coding account, the N400 is conceptual-
ized as the magnitude of lexico-semantic prediction error produced by incoming words
during the process of inferring their meaning. Finally, we highlight important directions
for future research, including a discussion of how these computational models can be
expanded to explain language-related ERP effects outside the N400 time window, and
variation in N400 modulation across different populations.

1. General introduction

Whether we are listening to a podcast, reading a novel, or skimming a

scientific article, each word that we encounter carries a unique meaning that

needs to be activated in semantic memory. We also know from a large body

of research using event-related potentials (ERPs) that each of these incom-

ing words triggers a characteristic neural response—the N400, which has

provided language researchers with an important window into how the

brain processes language. In this review, we explore several computational

models of the N400, and their contributions in characterizing this important

neural phenomenon.

During language comprehension, the N400 can be detected at the scalp

surface as a negative-going waveform with a central-posterior scalp distribu-

tion, observed between 300–500ms following word onset (Kutas & Hillyard,

1980, 1984). This component is often interpreted as a basic component of

semantic processing, as it is known to be elicited by any meaningful stimulus,

including not only words, but also images, videos, and environmental sounds

(see Kutas & Federmeier, 2011 for a review).

Historically, the N400 was first described by Kutas and Hillyard (1980),

who showed that semantically anomalous sentence completions produce a

larger N400 than congruous completions (He spread the warm bread with

*socks vs butter). However, later studies of sentence comprehension showed

that large N400s are also evoked by plausible words, as long as they are unex-

pected in relation to their preceding contexts. Indeed, one of the strongest
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predictors of the N400 is a word’s contextual predictability, with increasing

levels of predictability leading to graded reductions in N400 amplitude

(DeLong, Urbach, & Kutas, 2005; Kutas & Hillyard, 1984).

Although this component was first described in sentence contexts, it

soon became clear that a robust N400 is also evoked by words with no prior

context, and that the magnitude of the N400 produced by words in isolation

varies systematically as a function of various lexical characteristics. For exam-

ple, words trigger larger N400 responses when they are less frequent

(crypt>house; Rugg, 1990; Van Petten & Kutas, 1990), when they carry a

larger number of semantic features (house> thing; e.g., Amsel, 2011;

Holcomb, Kounios, Anderson, & West, 1999; Kounios & Holcomb, 1994;

Rabovsky, Sommer, & Abdel Rahman, 2012), and when they have more

overlapping orthographic neighbors (core>kiwi; Holcomb, Grainger, &

O’Rourke, 2002; Laszlo & Federmeier, 2007, 2011, 2014). In addition,

the N400 is also modulated in simple priming tasks: Repeated target words

(e.g., nurse—nurse; Misra & Holcomb, 2003; Rugg, 1985) and semantically

related target words (e.g., doctor—nurse, Bentin, McCarthy, & Wood,

1985; Holcomb, 1988; Holcomb & Neville, 1990; Rugg, 1985) produce

smaller N400 responses than target words that are unrelated to their preceding

primes (e.g., taco—nurse).

There has been much discussion about the functional role of the N400.

Some researchers have focused on its sensitivity to lexical factors, arguing

that the N400 amplitude reflects the ease of “accessing” (or “retrieving”)

a word’s lexico-semantic features. Specifically, these researchers have argued

that this access or retrieval process should be “easier” for words with higher

frequency (e.g., Rugg, 1990; Van Petten & Kutas, 1990), and when fewer

semantic features need to be retrieved (e.g., Lee & Federmeier, 2008). Other

researchers have focused on the sensitivity of the N400 to sentence-level

context, arguing that this component reflects a process of “integrating” or

“unifying” an incoming word into its preceding context (e.g., Hagoort,

Baggio, & Willems, 2009), which occurs only after an initial state of lexical

access/retrieval is complete.

Over time, however, the field of psycholinguistics has moved away from

this strict, serialized conception of lexical access vs integration, and toward a

more interactive account, in which these two processes proceed in parallel,

with continuous interactions between lower-level lexico-semantic and

higher-level event representations (e.g., Kuperberg & Jaeger, 2016;

MacDonald, Pearlmutter, & Seidenberg, 1994). Similarly, our understanding

of the N400 has evolved in tandem. Perhaps the clearest expression of this
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interactive view comes from Kutas and Federmeier (2011), who argue that

incoming words induce changes in the activation state of semantic memory,

and that the amplitude of the N400 reflects the magnitude of these changes.

An important strength of Kutas and Federmeier’s framework is that it cap-

tures a wide variety of empirical findings that initially appear to have little in

common (e.g., the effects of orthographic neighborhood size and the effects of

contextual predictability). For example, under this formulation, words with a

large number of orthographic neighbors (core) will automatically activate over-

lapping items in semantic memory (bore, more, tore), resulting in a larger N400

response. In addition, repeated words (nurse—nurse) or words that are highly

predictable in context will elicit a small N400 response because their

lexico-semantic representations were already active in semantic memory,

resulting in a smaller change in semantic activity after word onset. Because

many different types of stimuli can influence the state of semantic memory,

this framework is also general enough to explain why non-linguistic inputs,

such as pictures or environmental sounds, also generate robust N400s.

Despite its successes, this verbal description of the N400 leaves many

questions unanswered: What is the nature of the “state” of semantic mem-

ory? How do we quantify the impact of an incoming stimulus on this state?

More specifically, how does an incoming stimulus interact with semantic

memory? One way of answering these questions is to develop an explicit

implementation of these theoretical assumptions within a computational

model. Like the human brain, computational models can process linguistic

inputs in order to perform certain tasks. By probing the internal states of

these models, we can determine which computations or cognitive opera-

tions most closely resemble the patterns of N400 activity produced during

online language comprehension.

The goal of this review is to describe and discuss a group of computational

models that have been developed to simulate the N400.a In Section 2,

a There has also been work that relates the N400 to other computational models, developed in the field

of Natural Language Processing, in which complex neural networks are trained to predict upcoming

words in large corpora of spoken or written text (e.g., Devlin, Chang, Lee, & Toutanova, 2019;

Radford et al., 2019). For example, it has been shown that predictability estimates from these models

(Heilbron, Armeni, Schoffelen, Hagoort, & de Lange, 2020; Michaelov, Coulson, & Bergen, 2021), or

activity within some of their layers (Lindborg & Rabovsky, 2021) can predict N400 amplitudes pro-

duced during natural language comprehension. However, the architectures of these models are gen-

erally biologically implausible, and the nature of their internal representations is quite opaque and

difficult to link specific cognitive operations in the human brain. Therefore, in this review, we focus

on the neural network models that were explicitly designed to provide insights into the cognitive and

neurobiological mechanisms of the N400.
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we describe a set of “word-level” models that were trained to transform letter

strings (e.g., C-A-T) into word meanings. In Section 3, we describe a set of

“sentence-level” models that process sequences of word inputs, and that

include representations of whole events. For each of these models, we intro-

duce the authors’ underlying theoretical assumptions and the empirical

scope of the model. We then describe the model’s architecture (including

its training procedure), and the set of N400 findings it is able to simulate.

We conclude by discussing the important insights and limitations of each

modeling approach. In Section 4, we provide four important cognitive

and biological constraints to consider when comparing different modeling

approaches, and we provide a general summary of the word-level and

sentence-level models in relation to these constraints. In Section 5, we

describe a novel Predictive Coding model of the N400, developed in our

own lab, which satisfies these constraints, and successfully explains a wide

range of N400 phenomena at both the word-level and sentence-level.

Finally, in Section 6, we consider outstanding questions and future direc-

tions for the field.

2. Word-level models

Traditionally, models of word recognition assumed that incoming

word-forms make contact with their unique lexical entries at a discrete

“recognition point” (Forster, 1979, 1981). The N400, however, is a

dynamic neural process that unfolds over several hundred milliseconds fol-

lowing word onset (300–500ms). Moreover, as discussed above, this

stimulus-driven process is thought to activate semantic memory, which is

typically characterized in terms of distributed (rather than localist) represen-

tations (cf. Hinton, McClelland, & Rumelhart, 1986). In this section, we

discuss connectionist models that implement these insights. We refer to

these as “word-level” models because they focus on simulating the sensitiv-

ity of the N400 to various lexical-level variables, as well as its sensitivity to

minimal single word contexts in priming paradigms. In this set of models,

orthographic features are mapped onto distributed semantic representations.

However, as we will see, these models differ in how they operationalize the

N400, with one class defining it as the total magnitude of semantic activation

induced by the bottom-up input, and the other defining it as the difference

between the model’s current semantic state and an “ideal” target state

(prediction error).
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2.1 Semantic activation model: Laszlo & Plaut, 2012
2.1.1 Introduction
The first computational model to simulate the N400 using a neural network

was developed by Laszlo and Plaut (2012). In their formulation, Laszlo and

Plaut (2012) hypothesized that the N400 tracks the total magnitude of activ-

ity produced by bottom-up orthographic input within a Semantic Output

layer. The authors had two goals. The first was to determine whether the

activation dynamics induced in the Semantic Output layer would reproduce

the time course andmorphology of theN400. Like many ERP components,

the N400 first rises to a peak (at 400ms) and then falls to baseline. The

authors asked whether a set of biologically-motivated architectural con-

straints would produce the same rise-and-fall pattern of activation within

the model’s semantic units.

Laszlo & Plaut’s second goal was to determine whether their semantic

activation metric (mean semantic activation) was able to simulate the

N400’s sensitivity to differences in orthographic neighborhood size.

Empirically, it has been shown that the amplitude of the N400 is larger

to words like “core,” which have many overlapping orthographic neigh-

bors (e.g., more, bore, care) than to words like “kiwi” with fewer neighbors

(Holcomb et al., 2002; Laszlo & Federmeier, 2007, 2011, 2014).

Critically, the same N400 neighborhood effect is observed when readers

process unfamiliar, non-word letter-strings (e.g., dore >diwi) (Laszlo &

Federmeier, 2007). These findings suggests that semantic activation is largely

obligatory, and that unfamiliar letter strings can also produce feed-forward

semantic activation, even if these strings fail to map onto a pre-stored lexical

representation. They can be intuitively explained within a connectionist

framework in which there is continuous interaction between orthographic

representations and distributed semantic features (e.g., Harm & Seidenberg,

2004; Rogers & McClelland, 2008). Because each orthographic unit is

linked to multiple semantic features, more semantic activity should be trig-

gered by more densely-connected orthographic inputs. Moreover, because

orthographic-to-lexical weights are shared across strings (e.g., core, dore),

orthographic overlap effects should also be observed on completely novel

letter sequences that were never presented during training.

2.1.2 Model characteristics
Laszlo and Plaut’s connectionist model architecture included an

Orthographic Input layer, a Semantic Output layer, and two intermediate
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hidden layers (one of which was an autoencoder), see Fig. 1A. In the

Orthographic Input layer, three-letter orthographic inputs (e.g., C-A-T)

were coded as distributed bit patterns over 15 units (5 bits per letter;

for example, [1 1 0 0 0] might correspond to the letter “A”). In the

Semantic Output layer, distributed semantic representations were coded

as sparse random binary patterns across 50 semantic units. The model was

trained to activate a unique pattern of semantic units (e.g.,<has-whiskers>,

<animal>) in response to a given orthographic input (C-A-T)b.

Semantic Activation Model 
Cheyette & Plaut, 2017

Semantic Attractor Model
Rabovsky & McRae, 2014

Reconstruction

Clean-Up

Clean-Up

Autoencoder

Hidden

Semantics

INH

INH

INHINH

Orthographic

Semantics

Word-form

Target Semantics

Cross Entropy Error*
*

A. B. 

Fig. 1 The neural network architectures of two “word-level” models of the N400. * is
used to indicate layers/representations that were used to compute the N400.
(A) Semantic Activation Model. The N400 was operationalized as the total semantic acti-
vation at the Semantics layer. The architectures used by Laszlo and Plaut (2012) and
Laszlo and Armstrong (2014) were very similar, but had random, fixed outgoing connec-
tions from the inhibitory (INH) units (i.e., the inhibitory weights were not learned), and
no clean-up layer associated with the Hidden layer. (B) Semantic Attractor Model. The
N400 was operationalized as the cross-entropy between the model’s semantic output
and a target semantic representation defined by the modeler. Arrows mapping from
one layer to another indicate connection weights that are learned during training.
Pink ovals indicate layers encoding distributed semantic features. Yellow ovals indicate
layers encoding word-form features. Gray ovals indicate layers whose encoded repre-
sentations do not have a clear linguistic interpretation. Ovals with solid outlines indicate
Input or Output layers. Ovals with dashed outlines indicate Hidden layers. Panel (A) The
particular architecture depicted here is adapted from Cheyette, S. J., & Plaut, D. C. (2017).
Modeling the N400 ERP component as transient semantic over-activation within a neural
network model of word comprehension. Cognition, 162, 153–166, fig. 3. Panel (B) The
architecture depicted here is adapted from Rabovsky, M., & McRae, K. (2014). Simulating
the N400 ERP component as semantic network error: Insights from a feature-based connec-
tionist attractor model of word meaning. Cognition, 132(1), 68–89, fig. 1.

b Throughout this review, we will use italics to refer to a particular lexical item (e.g., cat), upper-case

letters to refer to its orthographic representation (e.g., C-A-T), and angular brackets to refer to seman-

tic features that are associated with that item (e.g., <has-whiskers>).
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Because Laszlo and Plaut (2012) were interested in modeling the char-

acteristic time course of theN400, they incorporated several neurobiologically

motivated constraints on the model’s architecture to influence its activation

dynamics. Unlike typical connectionist models in which weights can take on

any positive or negative value, units in the model were constrained to have

either excitatory or inhibitory outgoing connections (but not both). In addi-

tion, inhibitory neurons were only allowed within-layer connections, and

the number of inhibitory units was limited, relative to excitatory units

(cf. Crick & Asanuma, 1986).

Following an orthographic pre-training procedure using the autoen-

coder, the model was trained to recognize two types of lexical items:

62 “words” with consonant-vowel-consonant sequences (e.g., dog), and

15 “acronyms” that always had a consonant in the central position (e.g.,

dvd). In addition, the model was trained to distinguish between these lexical

items (i.e., words and acronyms) and the same set of items, but with visual

distortions (in each item, a letter was distorted by flipping one bit to the

wrong value). Specifically, the model learned to inhibit activation in the

semantic layer whenever a visually-distorted lexical item was encountered.

The modelers verified that the model was able to distinguish between the

lexical items (words and acronyms) and the visually-distorted items by com-

paring the overall amount of semantic activation produced by these two

types of input.

2.1.3 N400 simulations
In all simulations, a three-letter string was clamped at the input layer, and

activity was allowed to propagate forward to the Semantic Output layer.

The N400 was operationalized as the mean activation produced across all

units within this Semantic Output layer, and this mean value was plotted

at each model iteration. The authors showed these simulated time courses

shared some important similarities with the neural N400 response.

Specifically, a few iterations after stimulus onset, activation within the

semantic layer first rose to a peak and then fell to a stable value: a pattern

that Cheyette and Plaut (2017) later referred to as “transient semantic

over-activation” (p. 2). The authors also demonstrated that these activation

dynamics depended on the specific architectural constraints of the model.

For example, when the model was retrained to allow connection weights

of any sign (positive or negative), semantic activation no longer exhibited

the characteristic rise-and-fall of the N400 response.
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The authors also successfully simulated the effects of orthographic neigh-

borhood size on the N400. In the model’s trained vocabulary, words had

a larger orthographic neighborhood size (6.8 neighbors) than acronyms

(0.8 neighbors), and, as predicted, the words produced a much larger

N400 response (dog>dvd). Similar neighborhood effects were also observed

on untrained non-word stimuli, with larger simulated N400 responses pro-

duced by “pseudowords” (non-words with a word-like consonant-vowel-

consonant structure, e.g., deg) than to illegal “letter strings” (non-words with

an internal consonant, e.g., xvd). To explain these effects, the authors argued

that both the real words and the pseudowords automatically activated the

semantic features of their orthographic neighbors, resulting in greater total

semantic activation within the model.

Of note, although the model was able to successfully simulate the effect

of orthographic neighborhood size on both words and pseudowords, it did

not reproduce another finding that has been reported in the ERP literature:

the larger N400s produced by pseudowords, compared to real words (e.g.,

deg>dog) (Bentin, 1987), even when orthographic neighborhood size is

controlled (e.g., Holcomb et al., 2002; Meade, Grainger, & Holcomb,

2019; Meade, Midgley, Dijkstra, & Holcomb, 2018; but see Laszlo &

Federmeier, 2011 who found no such effect of lexical status on the

N400). Instead, the model showed increased semantic activity in the opposite

direction, i.e., words>pseudowords at all levels of orthographic neighbor-

hood size (see fig. 7 in Laszlo & Plaut, 2012). This finding can be explained

by the model’s training procedure: As noted above, the model was explicitly

trained to suppress semantic activity to visually distorted inputs that did not

exactlymatch the inputs received during training (words and acronyms). It is

therefore not surprising that Semantic Output layer produced less activation

in response to pseudowords and illegal strings than to trained lexical inputs

(words and acronyms).

2.2 Semantic activation model (2): Laszlo & Armstrong, 2014
2.2.1 Introduction
While the model by Laszlo and Plaut (2012) provided an intuitive simulation

of orthographic neighborhood effects, its assumptions made it difficult to

simulate another important phenomenon—the effects of priming on the

N400. It is well known that repeated words (cat—cat) elicit a smaller ampli-

tude N400 response than non-repeated words (sun—cat) (e.g., Misra &

Holcomb, 2003; Rugg, 1985). However, without additional assumptions,
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presenting the model with the same input twice would be expected to lead

to even greater levels of semantic activation.

Therefore, to simulate the effects of repetition priming on the N400,

Laszlo and Armstrong (2014) extended the original model by introducing

a neural fatigue mechanism (Grill-Spector, Henson, & Martin, 2006).

Specifically, they incorporated an exponential decay function (the alpha

function), which ensured that any units with activity above a pre-

determined threshold would experience time-dependent decay, pushing

their activation toward zero. Laszlo and Armstrong (2014) argued that this

addition was biologically plausible because the alpha function has previously

been used to simulate the rise-and-fall of cortical post-synaptic potentials

that produce the ERP signal (Bugmann, 1997).

2.2.2 N400 simulations
To simulate repetition priming, the extended model was presented with a

prime letter string, followed by a single blank “input,” followed by a target

that was identical or unrelated to the prime (e.g., cat—cat; sun—cat).

Mirroring the empirical findings, the authors found that the mean semantic

activation produced by the repeated presentation of the input was smaller

than that produced by its initial presentation. This was the case, regardless

of whether the repeated strings were words or non-words.

2.3 Semantic activation model (3): Cheyette & Plaut, 2017
2.3.1 Introduction
In a later work, Cheyette and Plaut (2017) further extended the Semantic

Activation model to simulate a wider range of lexical and priming effects

on the N400 (as well as some additional behavioral effects, which are outside

the scope of this review).

First, in addition to replicating the effects of orthographic neighborhood

size on the simulated N400 produced by words, the authors aimed to sim-

ulate two additional lexical effects. The first was the effect of semantic

richness—the larger N400 evoked by words with a larger number of seman-

tic features (Amsel, 2011; Rabovsky et al., 2012; but see Kounios et al.,

2009), with more semantic associates (Laszlo & Federmeier, 2011), and with

more concrete meanings (Holcomb et al., 1999; Kounios & Holcomb,

1994; Lee & Federmeier, 2008). Second, they simulated the effects of word

frequency—the finding that high frequency words elicit a smaller N400 than

low frequency words (nub>man; Rugg, 1990; Van Petten & Kutas, 1990).
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In addition to these lexical effects, Cheyette and Plaut also extended

Laszlo and Armstrong (2014)’s “neural fatigue” approach (albeit using a

slightly different activity-dependent decay function) to simulate both repe-

tition priming and semantic priming effects on the N400 (e.g., Bentin et al.,

1985; Holcomb, 1988; Holcomb & Neville, 1990; Rugg, 1985). They dis-

tinguished between two types of semantic priming effects: semantic feature

priming in which the prime and target share semantic features but are not

necessarily associated, and semantic associative priming in which the prime

and target co-occur in the same contexts, even when they share few seman-

tic features (see Moss, Ostrin, Tyler, & Marslen-Wilson, 1995 for a discus-

sion of this distinction).

2.3.2 N400 simulations
As expected, the model generally replicated the prior simulations of Laszlo

and Plaut (2012) and Laszlo and Armstrong (2014): Again, mean activity at

the semantic layer showed the characteristic rise-and-fall of the N400

response, and mean semantic activation showed an effect of orthographic

neighborhood size (although see our discussion below regarding some dis-

crepancies across different implementations of the Semantic Activation

model).

The authors also successfully simulated two additional lexical effects. To

simulate the effect of semantic richness, half the words were assigned three

semantic features (low richness), and half were assigned six semantic features

(high richness). Mirroring the empirical findings, words with a larger num-

ber of semantic features produced greater semantic activation.

To simulate the effects of frequency, during the initial training phase, half

of the words were designated as “high frequency” and were presented to the

models five times more often than their low frequency counterparts. As

predicted, the model N400 was smaller to the “high frequency” words that

were presented more often during training. The authors explained this fre-

quency effect by appealing to the notion of orthographic neighborhood.

Specifically, they suggested that low frequency words are more likely to

spread activation to their orthographic neighbors, thereby activating more

non-target semantic units, resulting in a larger N400 response. In contrast,

during training, the model would have learned to more successfully inhibit

the competitors of higher frequency words, resulting in less overall semantic

activation.

The decay function implemented by Cheyette and Plaut (2017) also

allowed them to simulate both repetition and two types of semantic priming
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effects. To simulate semantic feature priming, they contrasted targets pre-

ceded by primes that shared some of the prime’s semantic features with

primes that shared no features. To simulate semantic associative priming,

the authors exploited a feature of their training procedure. Specifically,

rather than providing weight updates for each word individually, the model

was presented with two words sequentially before the model’s weights were

updated. By assigning each word in the model’s lexicon to another semantic

associate, and by presenting these associates together on 30% of training tri-

als, the model learned to activate the semantic features of the associated

target while still processing the prime. During the simulation themselves,

they contrasted targets preceded by associated and non-associated primes

(none of these prime-target pairs shared semantic features). In all three prim-

ing simulations, the authors observed greater activity-dependent decay in

response to primed vs the non-primed target words.

Finally, the authors were also able to simulate interactions between lexical

factors and priming effects on the N400. For example, they showed that rep-

etition effects were larger on lower (vs higher) frequency words, consistent

with the prior literature (see Rugg, 1990; Young & Rugg, 1992), as well as

on words with more (vs fewer) semantic features (cf. Rabovsky et al., 2012).

According to the authors, because low frequency and semantically rich

words elicitedmore semantic activity when presented as primes, this resulted

in more neural fatigue (i.e., more activity-dependent decay) and a greater

attenuation in the N400 response on repeated targets.

2.4 Semantic attractor model: Rabovsky & McRae, 2014
2.4.1 Introduction
Rabovsky and McRae (2014) took quite a different approach to modeling

the N400. Instead of simulating this component as the magnitude of seman-

tic activity induced by an incoming word (as in the three versions of the

Semantic Activation model described above), they proposed that it reflected

“prediction error”; that is, the difference between the internal semantic state

of the model and the “true” semantic features associated with the input.

An important inspiration for this model was evidence for close links

between language comprehension and language learning (e.g., Chang,

Dell, & Bock, 2006; Dell &Chang, 2014; Elman, 1990). In supervised learn-

ing, training is accomplished by generating a pattern of neural activity in

response to an input, and then calculating the discrepancy between this

“prediction” and the “target” stimulus that is ultimately encountered.

This “prediction error” is then used to modify the network’s weights in

order to minimize future error. Under this scheme, large prediction errors
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trigger a greater degree of learning, which allows the model to better predict

and represent future inputs. In their simulations, Rabovsky and McRae

(2014) asked whether the same prediction errors used for word learning

can provide an accurate proxy for the N400 response elicited during word

processing.

In contrast to previous work, Rabovsky and McRae (2014) did not aim

to tackle neural realism within their model. For example, they did not limit

the number or distribution of inhibitory connections (as in Laszlo & Plaut,

2012). As we discuss later, they also did not attempt to tackle biological real-

ism during learning: prediction errors were calculated outside the model

itself. Instead, their aim was to determine whether the magnitude of the

externally-computed prediction error (used to train the network) would

accurately track changes in the N400 across a range of experimental condi-

tions. Similar to Cheyette and Plaut (2017), the authors also aimed to sim-

ulate various lexical and priming effects on theN400, although, as we discuss

later, this model was unable to simulate the processing of non-words.

2.4.2 Model characteristics
The model was a simple attractor network, with two levels of linguistic rep-

resentation and no hidden layers (Cree, McNorgan, & McRae, 2006), see

Fig. 1B. The first layer represented word-forms (30 units). Each word-form

was represented by activating a unique combination of three units (i.e.,

loosely analogous to letters, e.g., D-O-G), which allowed the model to sim-

ulate different degrees of orthographic overlap. Units in the second layer

represented individual semantic features (2526 units), which could be shared

across words (e.g., the feature <animal> might be shared across both

D-O-G and C-A-T).

The authors trained the model to map from a specific word-form to a

sparse set of semantic features. These form-to-meaning weights were learned

from input-output training examples (e.g., input: D-O-G; output:<animal>
and <barks>) via predictive, error-driven learning (Rogers & McClelland,

2008). During each training trial, a word-form (e.g., D-O-G) was clamped

at themodel’s input layer and the pattern of semantic of activationwas allowed

to settle into a stable pattern over 20 iterations. Next, the prediction error was

calculated as the cross-entropy between this pattern of semantic activity and

the correct target pattern. This errormeasurewas then used to update the con-

nection weights. This ensured that, when this word was encountered in the

future, the model would settle into a pattern of semantic activity that was

closer to the desired target pattern.
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2.4.3 N400 simulations
After training, the authors performed a set of simulations in order to deter-

mine whether this same cross entropy error signal would provide an accurate

index of the N400 response across different experimental conditions. Each

simulation operated similarly to the training trials described above. A

word-form input was presented to the model, and activity was allowed to

settle in the semantic layer. This model-generated pattern of activation

was interpreted as an “implicit prediction” of the correct target pattern

(cf. Rogers & McClelland, 2008), and the N400 was operationalized as

the cross-entropy between this implicit prediction (i.e., the current semantic

activation) and the “correct” pattern of semantic activation associated with

the target word. The authors plotted this prediction error signal at each iter-

ation, beginning at stimulus onset.

For each manipulation, in addition to carrying out a simulation using

cross-entropy error, the authors also carried out a simulation in which they

operationalized the N400 as the total magnitude of semantic activation

(across all units in the semantic layer) at each time-step. This was analogous

to the approach taken in the Semantic Activationmodels reviewed above. In

general, this semantic activation metric was much less accurate than

cross-entropy error in simulating various effects on the N400: it produced

the correct N400 pattern for differences in semantic richness, but, for all other

simulations, it produced either a null effect or an effect in the opposite direc-

tion.We compare these twomodelmetrics inmore detail below. At this stage,

however, we focus on describing the simulations using cross-entropy error.

Given the model’s biologically unrealistic architecture, the time courses of

these cross-entropy effects looked nothing like the actual N400 waveform

(unlike the simulations reported by Cheyette & Plaut, 2017; Laszlo &

Armstrong, 2014; Laszlo & Plaut, 2012). Nonetheless, the modulation of

cross-entropy error across conditions was similar to that of the empirical N400.

To simulate the effects of orthographic neighborhood size, inputs with

more orthographic neighbors were compared with those with fewer neigh-

bors (15 vs 7); words from the denser orthographic neighborhoods produced

a larger cross-entropy error. The authors explained this effect by pointing

out that, because words with larger neighborhoods (e.g., core) were more

likely to activate semantic features associated with their overlapping neigh-

bors (care, corn, cord), these patterns of semantic activation were less likely to

match the target, producing larger errors. In contrast, for low neighborhood

words (e.g., kiwi), each orthographic unit provided a highly accurate cue for

its unique set of semantic features.
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Similar to Cheyette and Plaut (2017), in order to simulate the effects of

frequency, the authors varied the number of training trials between high and

low frequency words. As expected, they found greater cross-entropy errors

for low frequency words than high frequency words. Similar to the expla-

nation above, the authors proposed that words with fewer training trials

would be less likely to produce the “correct” pattern of semantic activity,

thereby producing more error.

Finally, the authors observed a robust effect of semantic richness. Again,

similar to Cheyette and Plaut (2017), semantically richer words were

assigned a larger number of semantic features (16 vs 9). In Rabovsky and

McRae’s model, the semantic features were sparsely coded, and the model’s

default setting was to de-activate most semantic features by placing them in

the “off” setting. Therefore, successfully activating 16 of the model’s 2526

semantic units would always be more difficult and error-prone than activat-

ing only 9 semantic features.

In addition to these lexical effects, Rabovsky andMcRae (2014) also suc-

cessfully simulated two different types of N400 priming effects. To simulate

the effects of semantic priming, the model was presented with targets that

shared semantic features with a preceding prime word (cat—dog). The pre-

sentation of the prime led the model to “pre-activate” some of the upcom-

ing target’s features. Therefore, when the target was presented, the model

generated a smaller cross-entropy error than when it was preceded by an

unrelated prime.

To simulate repetition priming, the authors used a slightly different pro-

cedure, which aimed to provide a more direct link between prediction error

and long-term learning. In these simulations, the model continued to update

its weights after the presentation of each word, and cross-entropy errors were

compared before and after this weight update. As expected, this additional

training trial resulted in a more accurate pattern of semantic activation and

lower cross-entropy error for “repeated” items.

Finally, the authors showed that the repetition priming effect (simulated

as described above) interacted with two lexical variables: frequency (cf.

Rugg, 1990; Young & Rugg, 1992) and semantic richness (cf. Rabovsky

et al., 2012). For high frequency words, the model already possessed an

accurate mapping from form to meaning, and so the additional training

trial resulted in minimal updates and a relatively small repetition benefit.

In contrast, less familiar words benefited to a much greater extent from

the additional training, resulting in a larger reduction in cross entropy error

following the repetition. The interaction between repetition and semantic
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richness can be explained in a similar manner. Recall that semantically rich

words activated a larger number of semantic features overall. As a conse-

quence, with the additional trial of training, the cumulative error improve-

ment across multiple semantic units plausibly exceeded the cumulative error

improvement over just a few semantic units. This resulted in larger repeti-

tion priming effects for semantically rich words.

2.5 Word-level models: Insights and limitations
To sum up, we have reviewed two types of word-level model, each with

distinct approaches for modeling theN400 and its sensitivity to different lex-

ical variables and priming manipulations. The first approach, taken by Laszlo

and Plaut (2012), Laszlo and Armstrong (2014), and Cheyette and Plaut

(2017)—henceforth collectively referred to as LPAC—defined the N400

as the total magnitude of semantic activation induced by the bottom-up

input, in a connectionist architecture with sparse inhibition. The second

approach, taken by Rabovsky and McRae (2014), framed the N400 as an

implicit prediction error, where error was defined as the difference between

the model’s current semantic state and an “ideal” target state. Although both

approaches successfully simulated a range of empirical findings, each type of

model has its own unique set of strengths and weaknesses, which we

discuss below.

2.5.1 The N400 as total semantic activation (Cheyette & Plaut, 2017;
Laszlo & Armstrong, 2014 and Laszlo & Plaut, 2012)

An important strength of LPAC’s Semantic Activation model is its unique

temporal dynamics. By linking the N400 component to the transient

over-activation of semantic units, this account successfully simulated the rise

and fall of the ERP response observed at the scalp surface. This provides an

important empirical benchmark for any computational account of the

N400. A second strength is that this semantic activation value was naturally

produced by the model itself, analogously to how the N400 is computed in

the brain. As we will discuss, this was not the case for Rabovsky and

McRae’s model. However, there are three major limitations to LPAC’s

approach.

First, from the authors’ descriptions, it was not always apparent how the

model’s architecture influenced the pattern of semantic activation in their

simulations. As noted above, the authors imposed several architectural con-

straints on themodels, which were critical in producing the rise-and-fall pat-

tern of the simulatedN400. Importantly, however, some of these constraints
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also appear to have played an important role explaining the results of their

N400 simulations in ways that were not completely transparent. Moreover,

the application of these biological constraints varied across the different ver-

sions of the models, and several other constraints were not biologically

motivated.

Consider, for example, the effect of orthographic neighborhood size, in

which certain inputs (C-A-T) co-activated the semantic features of over-

lapping neighbors (cap; car; hat), resulting in enhanced semantic activity/

N400s. At face value, this effect appears to be explained intuitively in any

framework in which: (1) semantic activity is driven by the presence of excit-

atory feed-forward connections, and (2) these orthographic-to-semantic-

links are shared in a distributed fashion across lexical items. However, there

were clear differences in the consistency of orthographic neighborhood

effects across the different versions of the Semantic Activation model, which

likely depended on differences in its architecture. For example, the original

model by Laszlo and Plaut (2012) limited the overall number of inhibitory

units and fixed inhibitory weights to random values, resulting in a robust

orthographic neighborhood effect. However, the updated architecture by

Laszlo and Armstrong (2014) showed no clear neighborhood effects, with

real words (dog) and acronyms (dvd) eliciting similar N400 responses, despite

large differences in neighborhood size (see fig. 2 in Laszlo & Armstrong,

2014). Finally, in Cheyette and Plaut (2017)’s model, inhibitory weights

were updated during training, and themagnitude of the orthographic neigh-

borhood effect was much smaller than that originally reported by Laszlo and

Plaut (2012).

These discrepancies across the models are important because they suggest

that feed-forward activation alone was insufficient for generating the robust

orthographic neighborhood effects, and that additional architectural assump-

tions played a role. This issue becomes clearest when we consider the addi-

tional set of simulations carried out by Rabovsky and McRae (2014). As

noted above, in addition to carrying out simulations using cross-entropy error,

these authors also performed simulations in which the N400 was modeled as

total magnitude of semantic activity. In these simulations, the authors found

that the orthographic neighborhood effect was largely absent in their measure

of global semantic activation and even reversed at some time-points.

Similar issues arise when we consider the lexical frequency effect, sim-

ulated by Cheyette and Plaut (2017). To explain this effect, the authors again

appealed to the notion of orthographic overlap, arguing that, all else being

equal, a word that appears infrequently during training spread activation to a
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greater number of non-target semantic units, resulting in a larger N400

response. However, this effect again appears to be specific to their particular

architecture. In Rabovsky and McRae (2014), total semantic activation did

not vary as a function of lexical frequency; if anything the words with lower

frequency elicited smaller semantic activation during a brief processing win-

dow (see fig. 4 in Rabovsky & McRae, 2014).

In addition to these issues of transparency, some of the architectural

assumptions were not biologically motivated. As one example, Laszlo and

Plaut (2012) implemented only a single inhibitory unit at the semantic level,

whose weights were randomly initialized and not updated during training.

Because of this constraint, this inhibitory unit was equally likely to suppress

the correct set of “target” semantic features as it was to suppress incorrect

semantic features (e.g., the features of orthographic competitor). With no

source of selective inhibition, the model relied exclusively on excitation

in order to select the correct semantic target. As a consequence, words with

greater competition (from denser orthographic neighbors) would require

greater activation in order to be correctly identified. Although this absence

of selective inhibition was not biologically motivated, it was likely an impor-

tant source of the large orthographic neighborhood effects in this model.

A related issue is that, in these models, the functional role of the semantic

“clean-up” layer was not clearly specified. According to previous studies

(e.g., Hinton & Shallice, 1991), clean-up layers generally implement a form

of lateral competition by learning sets of semantic units that cluster together.

For example, if some of the semantic features of an input (cat) become active

(e.g., <pet> and <meow>), the clean-up layer will learn to activate this

word’s remaining semantic features (e.g.,< soft> and< fur>) during train-

ing. Because the clean-up layer’s connections are purely excitatory, this layer

cannot inhibit competing semantic features that are linked to orthographic

neighbors (e.g.,< taxi> or<vehicle>—features associated with the neigh-

bor, cab). Instead, it relies exclusively on “driving up” activity in the seman-

tic units of the cat cluster. Therefore, it is possible that this clean-up layer also

contributed to the transient over-activation of semantic units, especially in

the presence of co-activated neighbors.

The second major limitation of these Semantic Activation models con-

cerns the implementation of priming effects (repetition, semantic, and asso-

ciative priming). As noted earlier, modeling the N400 as total semantic

activity does not intuitively explain why one would expect to see a reduction

in total semantic activity to primed vs unrelated targets. Instead, primed tar-

gets should produce more semantic activation with repeated presentation,
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and this was exactly the pattern observed byRabovsky andMcRae (2014) in

their N400 simulations using global semantic activity.

In order to address this problem, Laszlo and Armstrong (2014) and

Cheyette and Plaut (2017) introduced their activity-dependent decay mech-

anism, which they motivated by appealing to “neural fatigue.” However,

while neural fatigue provides a biologically plausible account of neural sup-

pression, it is at odds with most cognitive theories of priming on the N400 in

the prior literature. According to these cognitive theories, reductions in the

N400 response reflect facilitated access to a target’s semantic features, which

have been pre-activated during the processing of the prime; that is, it should

be easier to retrieve the semantic features of primed than unprimed targets.

However, following neural fatigue, the same semantic features that were

activated by the prime would have rapidly decayed, and they would there-

fore be less available and more difficult to access when the target was presented.

This inherent paradox becomes most apparent when we consider how

Cheyette and Plaut (2017) attempted to simulate the behavioral priming

effect. To simulate behavioral facilitation, in addition to using the decayed

semantic activation that was computed at each time point, and that gave rise

to the simulated N400, the modelers also used (a running average) of the

undecayed semantic activity. This, however, raises two new concerns.

First, it seems implausible that, at the same time as producing neural activity

that is subject to decay, neurons simultaneously track the levels of activity

that they would have produced if they had not been subject to fatigue.

Second, if undecayed and decayed semantic activation values were both

maintained and updated at the same time—a central assumption of the

model—then why would only the undecayed semantic activation values con-

tribute to the summed activation (N400) measure, as measured on the scalp

surface?

2.5.2 The N400 as prediction error: Rabovsky and McRae (2014)
The model described by Rabovsky and McRae (2014) had its own set of

strengths and weaknesses. According to this model, the N400 reflected a dis-

tinct construct—semantic prediction error—which can be dissociated from

the total magnitude of semantic activation. This overcomes some inherent

difficulties in reconciling overall semantic activity with lexico-semantic

facilitation. For example, unlike Laszlo and Armstrong (2014) and

Cheyette and Plaut (2017), there was no need to introduce a separate decay

function to simulate N400 priming effects because, in this prediction error

framework, there was no inherent paradox between the reduction in the
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simulated and actual N400 response to primed words. In addition, this

model provides important insights linking the N400 response and error-

driven learning. However, there were several features of the model that

severely limited the plausibility of this account.

First, as the authors acknowledge, their model was unable to simulate the

characteristic rise-and-fall of the N400 response after word onset. Instead,

their measure of cross-entropy error was largest prior to word onset, and

the errors monotonically decreased during word processing as the network

settled into a pattern of activation that was closer to the correct target. In

addition, while empirical N400 effects show a remarkable temporal consis-

tency (appearing 300–500ms after word onset, see Federmeier & Laszlo,

2009), the latency of this model’s lexical and priming effects was highly

variable across simulations, with different effects appearing in multiple,

non-overlapping time windows.

Perhaps more importantly, the proposed mechanism for calculating pre-

diction error was neither cognitively nor biologically plausible. In this

model, the current state of semantic activation was framed as an “implicit

prediction,” and this prediction was compared, at each time point, with

an “ideal” target stimulus. However, during natural language comprehen-

sion, the brain does not have access to an ideal semantic “template” that cor-

responds to each incoming word. Instead, we must infer the correct set of

semantic features de novo based on the bottom-up input. This point becomes

especially clear when considering the processing of non-words (e.g., deg).

Non-words, by definition, do not correspond to a specific semantic target,

and so it is unclear, even in principle, how the brain would generate anN400

response to these inputs through this type of mechanism.

Moreover, even if the brain did have access to an ideal target pattern, this

model does not provide a mechanism to link the prediction error either to

cognitive processing or to evoked neural activity. This is because the target

was not presented to the network itself, and the computation of cross-entropy

error was carried out by a separate algorithm that lay outside the model. Of

course, these issues of biological plausibility are common to all computational

models that rely on supervised learning (see Whittington & Bogacz, 2019 for

discussion). However, we emphasize them here because prediction error, and

its role in learning, played a central role in this model of the N400.

Finally, we note that, although Rabovsky and McRae (2014) highlight

the link between the cross-entropy error and long-term learning, the model

actually used a different error measure during learning: the partial derivative
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of the cross-entropy error with respect to each weight. This value is, in prin-

ciple, dissociable from cross-entropy error. For example, the learning signal

could be close to zero while the cross-entropy error itself is still large (e.g., in

local minima or saddle points; Goodfellow, Bengio, & Courville, 2016).

Despite these limitations, the success of Rabovsky and McRae (2014)’s

model inspired a body of follow-up work that began to address some of these

concerns, which we describe in the next section.

3. Sentence-level models

In Section 2, we reviewed two classes of computational model that

simulated the N400’s sensitivity to various lexical and semantic factors,

including the effects of minimal contexts (priming). However, during online

language comprehension, the brainmust also build a higher-level event inter-

pretation that is incrementally updated as each incoming word becomes

available in real time. This abstract event state is thought not only to repre-

sent the past (based on the full sequence of words encountered thus far), but

also to implicitly predict the future (Altmann & Kamide, 1999; Knoeferle &

Crocker, 2006; Kuperberg, 2013; McRae & Matsuki, 2009).

As discussed by Elman (1990), dynamic states of this kind can be

implemented in connectionist networks by incorporating recurrent ele-

ments. Recurrencies allow a model to retain a memory trace of prior inputs

by providing the model’s prior state as a new input on the next iteration of

the model. These recurrent connections also allow the model to implicitly

predict its own future state when encouraged to do so (either implicitly or

explicitly) during training. In this section, we describe three “sentence-

level” models that aimed to simulate the effects of broader context on the

N400, all which included a recurrent element of this kind.

We also note two additional points at this stage. First, all these models

conceptualized “time” somewhat differently from the word-level models

described in Section 2. In all three cases, themodel received two inputs at each

time point: a new incoming word and the previous state of the model.

Therefore, each word input was only processed for a single model iteration.

As a consequence, these models were unable to simulate the rise and fall of

the N400 response when processing a single word. Second, all three models

used unstructured (localist) lexical representations, which prevented them

from simulating a range of lexical effects (e.g., orthographic neighborhood,

words vs pseudoword), or the interactions between these lexical factors and

higher-level context.
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3.1 Retrieval-integration model: Brouwer, Crocker,
Venhuizen, & Hoeks, 2017

3.1.1 Introduction
Brouwer et al. (2017) provided the first computational model that attempted

to simulate sentence-level effects on the N400. Their recurrent model was

trained to map a sequence of lexical inputs (e.g., The meal was prepared by the

cook) on to a higher-level event representation that linked the semantics of

each word to their appropriate thematic roles (e.g., Agent: <cook>,

Action: <prepared>, Patient: <meal>). Unlike the word-level models

described thus far, these authors conceptualized the magnitude of the

N400, induced by each word, as the amount of change induced by the input

in one of the model’s internal hidden layers. A central goal of this account

was to distinguish changes induced at the lexico-semantic level, which they

linked to the N400, from changes induced at a higher event-level represen-

tation, which authors linked to a later, positive-going ERP response known

as the P600.

The primary empirical benchmark for this model was the pattern of

N400 and P600 modulation reported in an experiment carried out in

Dutch by Hoeks, Stowe, and Doedens (2004). In this study, Hoeks and

colleagues manipulated the congruity between the prior context and the

sentence-final verb, as well as the sentence structure by presenting sentences

in either active or passive voice. This resulted in one expected control con-

dition (Condition 1) and three semantically anomalous conditions (see

below). In two of the anomalous conditions (Conditions 2 and 4), the verb

(sung) was not associated with words in the prior context. However, in

Condition 3, despite being globally anomalous, the verb (prepared) was

semantically associated with words in the prior context. These sentences

were referred to as thematic role reversal anomalies.

(1) The meal was by the cook prepared. (Literal translation: The meal was pre-

pared by the cook.)

(2) The meal was by the cook sung. (Literal translation: The meal was sung by

the cook.)

(3) The meal has the cook prepared. (Literal translation: The meal has prepared

the cook.)

(4) The meal has the cook sung. (Literal translation: The meal has sung the

cook.)

At the sentence-final verb, Hoeks et al. (2004) observed a standard contex-

tual congruity effect when semantically anomalous verbs shared no associ-

ation with words in the prior context i.e., a larger N400 response in
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Conditions 2 and 4 than that evoked by the verbs in the expected condition

(Condition 1), i.e., sung>prepared. However, when semantically associated

role-reversal anomalies (Condition 3) were compared to the expected verbs

(Condition 1), there was no modulation on the N400, i.e., prepared¼
prepared. Instead, these role-reversal anomalies elicited a late posteriorly-

distributed positive-going component known as the P600 (for similar

findings, see Kim & Osterhout, 2005; Kolk, Chwilla, van Herten, &

Oor, 2003; Kuperberg, Sitnikova, Caplan, & Holcomb, 2003,

Experiment 1; Chow, Smith, Lau, & Phillips, 2016). To explain this reduced

N400 on the role reversal anomalies, Brouwer et al. (2017) argued that the

anomalous verbs (prepared) were primed by the set of semantically associated

words within the prior context, leading to facilitated lexico-semantic access.

They suggested that the role reversal anomalies instead caused difficulty at a

later, post-lexical “integration” stage in which the semantic features of the

verb were used to update the higher-level event state, and that this resulted

in the larger P600.

3.1.2 Model characteristics
The authors implemented a recurrent connectionist model to simulate these

findings, see Fig. 2A. They separated the model into two hierarchically-

organized modules. The lower “Retrieval Module” received localist lexical

inputs (e.g., cook), and activated their appropriate distributed semantic rep-

resentations in a Semantic Output layerc via a hidden Semantic Retrieval

layer. The Semantic Output layer encoded the 35 words in the model’s lex-

icon as a distributed pattern of activation across 100 semantic units.

According to the authors, the intermediate hidden layer—the Semantic

Retrieval layer—represented the current state of semantic memory.

The higher “Integration Module” mapped from a sequence of semantic

inputs (presented to the Semantic Output layer) to an Event Output layer via

a hidden Integration layer. The Integration layer had recurrent connections,

both to itself and to the Semantic Retrieval layer below, and carried an

implicit representation of the unfolding event. The Event Output layer

contained 300 units, which were divided into three “slots,” with the first

100 units corresponding to the semantic features of the Agent, the second

100 to those of Action and the third 100 to those of the Patient.

c We use the term “Semantic Output layer” to be consistent with the use of this term in the single word

models reviewed above. Brouwer and colleagues referred to this layer as the Retrieval_Output layer.

Similarly, we will use the term “Event Output layer” instead of Integration_Output layer to be con-

sistent with the nomenclature of models discussed later in this review.
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Retrieval-Integration Model
Brouwer, et al, 2017
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Fig. 2 The neural network architectures of three “sentence-level”models of the N400. * is used to indicate layers/representations that were used to compute
the N400. (A) Retrieval-IntegrationModel. The architecture consists of a RetrievalModule (bottom) and an IntegrationModule (top) whoseweights were trained
separately (see text). The N400 was operationalized as the degree of shift in activation at the Semantic Retrieval layer after processing a given input.
(B) Sentence Gestalt Model. The architecture consists of an Update Network (left) and a Query Network (right). The N400 was operationalized as the degree
of shift in activation at the Sentence Gestalt layer after processing a given input. (C) Error Propagation Model. The architecture consists of a Sequencing System
(left) and a Message System (right). The Sequencing System processed a sequence of lexical inputs (encoded in the PrevWord and PrevWordHistory layers) to
predict the next word. The N400 was operationalized as the difference (absolute value) between predicted activity at the NextWord layer and the observed
target word defined by the modeler. The Message System encoded events in the fast-changing links between the Role and Concept layer (and equivalently,
CConcept to CRole), indicated by a thick green-pink line; the EventSemantics layer (in blue) encoded the relative prominence of different arguments in the
sentence. Solid arrows mapping from one layer to another indicate connection weights that are learned during training. Dashed arrows denote a “copy”
operation. Black ovals indicate layers encoding lexical information. Pink ovals indicate layers encoding distributed semantic features. Gray ovals indicate layers
whose encoded representations do not have a clear linguistic interpretation.Ovals with solid outlines indicate Input or Output layers.Ovals with dashed outlines
indicate Hidden layers. Panel (A) The depicted architecture is adapted from Brouwer, H., Crocker, M. W., Venhuizen, N. J., & Hoeks, J. C. J. (2017). A neuro-
computational model of the N400 and the P600 in language processing. Cognitive Science, 41(Suppl. 6), 1318–1352, fig. 2. Panel (B) The depicted architecture
is adapted from Rabovsky, M., Hansen, S. S., & McClelland, J. L. (2018). Modelling the N400 brain potential as change in a probabilistic representation of meaning.
Nature Human Behaviour, 2(9), 693–705, fig. 1A. Panel (C) The depicted architecture is adapted from Fitz, H., & Chang, F. (2019). Language ERPs reflect learning
through prediction error propagation. Cognitive Psychology, 111, 15–52, fig. 9.



Thus, the event corresponding to the “The cook prepared a meal” would be

encoded by activating <cook> in the Agent slot, <prepared> in the

Action slot, and <meal> in the Patient slot.d

To implement the conceptual distinction between the Retrieval Module

and the Integration Module, the two modules were trained in separate

stages. To train the Integration Module, each sentence was presented as a

sequence of distributed semantic vectors (e.g., < the> <cook>
<prepared> < the> <meal>), and the model learned mappings between

each sequence and the appropriate event output representation (e.g., Agent:

<cook>, Action: <prepared>, Patient: <meal>). Backpropagation

occurred after each word. Therefore, the model learned to represent the full

event and to implicitly predict upcoming semantic-thematic roles before the

sentence was complete.

Next, the Retrieval Module was trained to map from a sequence of

localist lexical representations (e.g., the cook prepared the meal) to the appro-

priate target event within the Event Output layer, as soon as possible in the

sequence. During this second stage of training, the weights that were

learned in the first stage were fixed. Therefore, learning to map lexical rep-

resentations to the correct target event implicitly required that each lexical

input (e.g., cook) mapped to the appropriate semantics (e.g., <cook>). In

addition, because there were feedback connections from the hidden

Integration layer to the hidden Semantic Retrieval layer, which were not

fixed, the network was trained to minimize the error across both the

“top-down” event-level information and the bottom-up lexical information

simultaneously (these two “inputs” were combined into a single vector).

It therefore also learned associative relationships between the semantic fea-

tures of sequences of lexical inputs that constituted stereotypical events

(which were presented most frequently as targets during training, as

described below).

In both stages of training, the model was presented with a set of active

and passive sentences with similar structures to those used by Hoeks et al.,

2004. Stereotypical Agent-Action-Patient combinations were presented

50% of the time (e.g., The meal was prepared by the cook). In addition, the

model was explicitly trained on “anomalous” Agent-Action-Patient combi-

nations (e.g., The meal has prepared the cook), each of which was presented less

d Here, we use angular brackets to refer to full set of distributed semantic features associated with a par-

ticular lexical item.
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frequently (the full set of anomalous combinations constituted the other 50%

of the training set). Because the training set included equal proportions of

active and passive sentences, the model could not use word order alone

to assign Agent and Patient roles. In addition, each noun was equally likely

to serve as an Agent or Patient.

3.1.3 N400 simulations
In their simulations, the authors presented sentences to the model, word by

word, similar to the procedure used during training. The authors operational-

ized theN400 as the cosine dissimilarity at the hidden Semantic Retrieval layer

across successive time-points/word presentations (from t to t+1), with a larger

cosine dissimilarity reflecting a larger state transition. This dissimilarity measure

was computed externally by the modelers, and was not used for any internal

computations in the model itself. Note that the activation in the Semantic

Retrieval layer was computed based on both the new bottom-up input as well

as top-down input from the Integration layer (induced by the previous word).

In addition, the authors operationalized the later P600 as the degree of update

induced by a lexical input within the hidden Integration layer—the “difficulty

in integration”—again between time point t and time-point t+1.

Using this cosine dissimilarity measure at the Semantic Retrieval layer,

the authors simulated N400 effects at the sentence-final verb in the four

experimental conditions described by Hoeks’ et al. (2004). In the expected

condition (Condition 1 above), they found that the final verb (e.g., prepared)

induced a fairly large shift at the Semantic Retrieval layer. Given that expected

words are known to evoke a small amplitude N400, this relatively large shift

was somewhat surprising. It also stands in contrast with the minimal shift

observed at the Integration layer (see fig. 5C in Brouwer et al., 2017), which

had already converged on the correct event prior to encountering the verb

prepared (see Limitations below for further discussion).

Critically, however, when the anomalous critical verbs were not

semantically associated with the set of words in the prior context

(Conditions 2 and 4), they induced a shift in the Semantic Retrieval layer

that was larger than the shift induced in the expected condition (sung>
prepared), mirroring the results of Hoeks et al. (2004). This occurred because

the model had learned to associate the semantic features of Agents and

Patients and Actions around stereotypical events (cook—food—prepared).

Therefore the associated expected verbs (prepared) produced a smaller shift

at the Semantic Retrieval layer than non-associated anomalous verbs

(e.g., sung).
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Finally, the authors also simulated the effect of the role reversal anom-

alies. They found that the degree of shift induced by the sentence-final verbs

in this condition (prepared) was the same as in the expected sentences (pre-

pared), and smaller than that observed when the anomalous verbs were

not semantically associated with words in the prior context (sung). Again,

the authors attributed the attenuation of the N400 in this condition to

semantic associative priming: the model had learned links between the verb

with the prior set of semanticaly associated lexical items, based on its prior

experience with stereotypical events, regardless of word order.

Importantly, the authors also showed that the reduced N400 to the asso-

ciated role reversal anomalies was not due to a mis-assignment of thematic

roles at the final verb (a “semantic illusion”): Because the model had been

trained on anomalies, even prior to verb onset, the Integration Output layer

showed Agent and Patient activations that were consistent with the actual

(anomalous) interpretation of the sentence (Agent: <meal>, Action:

<prepared>, Patient: <cook>) (see fig. 3 in Brouwer et al., 2017).

However, upon encountering the reversal anomaly, the Integration layer

nonetheless produced a large shift. This was because the final verb (prepared)

shifted the event representation from a relatively uncertain prior distribution

(representing multiple possible low-probability events) to a single anomalous

interpretation. The author’s argued that this higher-level shift reflected

“difficulty in integration” and that this difficulty was indexed by the large

P600 response produced in this conditione.

3.1.4 Insights and limitations
The computational model proposed by Brouwer et al. (2017) represents an

ambitious attempt to simulate ERPs at multiple levels of linguistic represen-

tation. The authors’ inclusion of recurrent connections allowed the model to

represent events beyond the time scale of individual lexical items and allowed

the hidden Integration layer to compute implicit predictions of specific

upcoming Agents, Actions and Patients. Because of the two-stage training

procedure, the model also learned to represent semantic associations between

the words used to describe stereotypical events, allowing for some facilitation

e The authors also found that the sentence-final verbs in the two non-associated anomalous conditions

(Conditions 2 and 4) produced a large shift at the Integration layer (the shift from the unpredicted prior

event state to the new anomalous event state). They argued that the reason why these two conditions

did not produce a visible P600 at the scalp surface in the study by Hoeks et al. (2004) was because of

component overlap from the earlier large N400 effect.
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on the simulated N400 produced by associated (vs non-associated) words at

the lower-level Semantic Retrieval layer. However, the model’s N400 sim-

ulations had several limitations, which we discuss below (a discussion of the

P600 is beyond the scope of this review).

The first set of problems relates to the authors’ conceptualization of feed-

back from the Integration layer to the Semantic Retrieval layer. Although

the authors describe this feedback as providing “pre-activation” that

influenced lexico-semantic processing of expected words, the model does

not actually implement top-down pre-activation as it is typically understood

in most psycholinguistic frameworks. In top-down predictive processing

models of language comprehension, the basic assumption is that higher levels

of representation provide top-down feedback that pre-activates lower-level

lexico-semantic representations (encoded at a smaller spatiotemporal scale)

before new bottom-up input becomes available (e.g., Federmeier, 2007;

Kuperberg & Jaeger, 2016, section 3.5). Following pre-activation,

lexico-semantic processing is facilitated if the incoming word that matches

these prior top-down predictions, with highly predictable words eliciting

little to no N400 activity.

However, in Brouwer et al.’s Retrieval-Integration model, there was no

intermediate time-step before word onset in which the Integration layer

could influence the state of the Semantic Retrieval layer. The top-down

context was only operative in a brief time-window in which the

bottom-up input was presented, and so the longer time-scale of the implicit

event representation at the Integration layer was not exploited. This failure

of predictable contexts to actually pre-activate the Semantic Retrieval layer

meant that when the expected words were encountered (Condition 1),

they produced a relatively large update at the Semantic Retrieval layer as

it shifted from representing the semantics of the previous word to that of

the new word. This, however, is at odds with the very small amplitude

N400 that is usually produced by expected words in constraining sentence

contexts.

Instead of being driven by top-down predictive pre-activation, the

smaller shift at the Semantic Retrieval layer to both the expected associated

verbs (Condition 1) and to the role reversed anomalous verbs (Condition 3),

relative to the non-associated anomalies (Conditions 2 and 4), occurred

because the model had learned associative relationships between the words

that constituted stereotypical events. The authors attributed this smaller shift

to facilitatory effects of associative lexico-semantic “priming” on the N400.

This interpretation, however, is at odds with a large body of empirical work
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showing that, although associative priming across individual words can

lead to some facilitation on the N400 during sentence comprehension,

these effects are relatively small (e.g., Camblin, Gordon, & Swaab, 2007;

Van Petten, 1993), and they cannot account for all the effects of

higher-level context. For example, in many situations, even when the

lexico-semantic associations across the “bags of words” within sentences

are matched across experimental conditions, the N400 is still smaller to

expected than to unexpected or incongruous words (e.g., Kuperberg,

Paczynski, & Ditman, 2011; Nieuwland & Kuperberg, 2008; Otten,

Nieuwland, & Van Berkum, 2007; Paczynski & Kuperberg, 2011, 2012;

Urbach, DeLong, & Kutas, 2015; Van Petten & Kutas, 1990, 1991;

Xiang & Kuperberg, 2015; see Kuperberg, 2016 and Shetreet, Alexander,

Romoli, Chierchia, & Kuperberg, 2019, Supplementary Materials section

3 for a recent review and discussion).

A second major issue with the model concerns its treatment of the

semantically anomalous inputs. As discussed above, despite these sentences

being anomalous, the model was explicitly trained with these inputs (e.g.,

The meal has prepared the cook) and so it had no difficulty assigning anomalous

Agents and Patients at the Event layer, in both reversible and non-reversible

anomalous sentences. This feature of the model was essential for the authors’

argument that the reduction of the N400 on the associated semantically

reversible anomalies did not reflect a “semantic illusion” (a mis-assignment

of thematic roles at the event level), but, instead reflected simple associative

priming. However, human behavioral experiments have shown that readers

do sometimes incorrectly assign thematic roles in non-canonical sentence

structures, like passives. This is even more likely to occur when role assign-

ment results in an implausible interpretation or when the roles are reversible

(e.g., Ferreira, 2003; Gibson, Bergen, & Piantadosi, 2013).

A final issue involves the model’s operationalization of theN400 as a shift

in state. This shift in state was computed outside the model by recording and

comparing the state of the Semantic Retrieval layer at two time points.

Moreover, because the Semantic Retrieval layer’s activation values were

not retained from the presentation of one word to the next, it is not clear

how the model itself would be able to compute this dissimilarity measure

without additional assumptions. In addition, it is also not altogether clear

why the model would compute this measure, although one possibility is

that the N400 arises as an epiphenomenon, resulting from process of

implicitly shifting activation from a prior to a new state, based on new

bottom-up input.
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3.2 Sentence gestalt model: Rabovsky, Hansen, & McClelland,
2018

3.2.1 Introduction
Another computational model by Rabovsky, Hanson and McClelland

(RHM18) had many similarities with Brouwer et al.’s Retrieval-

Integration model. Like Brouwer et al.’s model, RHM18’s model trans-

formed a sequence of word inputs (a sentence) into an implicit event

representation encoded in a hidden layer. However, unlike the Retrieval-

Integrationmodel, RHM18’s architecturewas not divided into separatemod-

ules that implemented semantic retrieval and integration, and, instead of

simulating the N400 as a shift within a hidden Semantic Retrieval layer,

RHM18 operationalized it as a shift of the implicit event representation itself

(analogous to how Brouwer et al. operationalized “integration” and the P600

effect).

Like Brouwer et al. (2017), RHM18 simulated N400 effects of semantic

incongruity (Kutas & Hillyard, 1980) and thematic role reversal (Chow

et al., 2016; Hoeks et al., 2004; Kim & Osterhout, 2005; Kolk et al.,

2003; Kuperberg et al., 2003). However, they also tackled several other

sentence-level phenomena, including the graded effects of congruity/

predictability on the N400 (Kutas & Hillyard, 1984), the so-called related

anomaly effect, i.e., the N400 reduction to incongruous words that are

semantically related to an expected completion (Federmeier & Kutas,

1999; Kutas & Hillyard, 1984), the effect of word position in sentences, i.e.,

the smaller N400 on content words that appear later vs earlier in coherent

sentences (Payne, Lee, & Federmeier, 2015; Van Petten & Kutas, 1990,

1991), and the null effects of contextual constraint (Federmeier, Wlotko,

De Ochoa-Dewald, & Kutas, 2007; Kuperberg, Brothers, & Wlotko,

2020; Kutas & Hillyard, 1984) and word order violation (Hagoort &

Brown, 2000) on the N400.

In addition to these sentence-level effects, the authors simulated the

effects of lexical frequency and priming that had been captured by previous

word-level models (Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014).

Finally, they carried out a simulation that began to address the question

of why the model might track the magnitude of the shift induced by

bottom-up input (the simulated N400). Building on the insights of the ear-

lier word-level model by Rabovsky and McRae (2014), RHM18 suggested

that the magnitude of this shift might function as a “prediction error” that

influenced downstream learning, analogous to how “temporal differences”
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are used to drive learning in reinforcement learning models (Sutton & Barto,

2018). To test this hypothesis, RHM18 simulated the interaction between

long-term repetition and sentence congruity—the finding that long-term

repetition effects on the N400 are larger on semantically incongruous (vs

congruous) sentence continuations (Besson, Kutas, & Van Petten, 1992).

3.2.2 Model characteristics
The architecture, shown in Fig. 2B, was based on earlier computational

models of event comprehension, developed by McClelland and colleagues

(McClelland, St. John, & Taraban, 1989; St. John & McClelland, 1990).

Localist lexical inputs (74 units, one unit per word) fed forward to a hidden

layer (Hidden 1), which then activated another hidden layer that was trained

to encode an implicit event representation (i.e., the semantic-thematic roles

of the current sentence). In RHM18’s model, this second hidden layer was

called the Sentence Gestalt (SG) layer, and it was partly analogous to the hid-

den Integration layer used by Brouwer et al. (2017). Again, the SG layer pro-

vided feedback through recurrent connections to an earlier layer (in this

case, the Hidden 1 layer), which allowed it to dynamically represent an event

state that implicitly anticipated upcoming semantic-thematic roles. This net-

work was called the Update Network and was used for all simulations. As in

Brouwer et al.’s model, during training, the SG hidden layer interfaced with

an Event Output layer, which was used to train the model and explicitly

encoded the semantic features associated with an event’s thematic roles

(although, as we describe below, this interface was indirect as the model

was trained via a separate Query Network). This Event Output layer was

separated into two partitions, with five units specifying one of five possible

thematic roles (e.g., Agent) and 171 units specifying the distributed semantic

features which could be associated with each role.

Unlike the Retrieval-Integration model, RHM18’s Sentence Gestalt

model was not hierarchically organized: the authors made no distinction

between the layers that represented the semantics associated with individual

words, and events. Therefore, instead of defining the N400 as a change in

state at a lower hidden layer (representing lexico-semantic information), it

was operationalized as the degree of change in the SG layer itself (which

implicitly represented event-based information), analogous to how

Brouwer et al., operationalized the P600.

These architectural assumptions were also reflected by how RHM18

trained their model. Unlike the Retrieval-Integration model, which was
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trained in two separate stages, the Sentence Gestalt model was trained in a

single stage by mapping sequences of lexical inputs on to complete events.

During training, a downstream Query Network played the role of

“teacher,” which allowed the hidden SG layer to learn the appropriate

semantic-thematic mappings of each sentence. On a typical training trial,

a sentence was presented to the model’s Update Network as a sequence

of localist lexical inputs (e.g., At breakfast the man eats eggs). As each word

activated the SG layer, this activity was fed into the model’s Query

Network, which included a Probe layer with the same structure as the

Event Output layer. After each word, the modeler presented the Query

Networkwith a set of partial event representations via this Probe layer by leav-

ing different partitions (semantic or thematic role) blank. Following each

“query,” the correct answer was then provided to the Event Output layer.

Because the model was queried after each input about semantic features or

thematic roles that had not yet been presented, the SG layer was encouraged

to implicitly anticipate an event’s upcoming semantic-thematic roles.

3.2.3 N400 simulations
As in Brouwer et al. (2017), the authors simulated the N400 by presenting

sentences to the model, word by word. At each time-point (t), the model

combined the new lexical input with the prior state of the SG layer to com-

pute a new, updated pattern of SG activations. The N400 was defined as

the absolute value of the change in activation within the SG layer (from

t to t+1), summed across all SG units. As for Brouwer et al. (2017), the mag-

nitude of this update was computed externally by the modelers.

Using this measure, the authors first examined the effects of contextual

congruity/predictability, going beyond Brouwer et al. (2017) by simulating

graded effects on the N400. During training, the authors used sentences in

which Agents performed Actions on stereotypical Patients. For example,

in a breakfast scenario, the eat action always occurred with either eggs or toast,

while in a dinner context, eat occurred with either pizza or soup (see

Supplementary Fig. 12 in RHM18 for details). However, in a given sce-

nario, certain Action-Object combinations were presented more frequently

to the model during training (e.g., “…eats eggs” appeared more often than

“…eats toast”). Therefore, when processing the sequence “At breakfast the

man eats…,” the model’s SG layer was able to represent the complete event

(Agent: <man>, Action: <eat>, Patient: <egg>) and to implicitly antic-

ipate the upcoming word (its semantic features and Patient role) before the

onset of the final noun. When the model encountered an expected Patient
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(eggs), this resulted in little to no change in the internal state of the SG layer,

consistent with the small N400 evoked by contextually predictable words.

In contrast, a larger SG update was triggered by lower-probability words

(“…eats toast”), and still larger updates were triggered by completely

“anomalous” words (“…eats oak”) that were never encountered in this con-

text during training.

The Sentence Gestalt model also successfully simulated the smaller N400

response to role reversal incongruities vs unrelated incongruities (specifi-

cally, the findings reported by Kuperberg et al., 2003 and Kolk et al.,

2003). However, this was for a different reason from that discussed above

in relation to Brouwer et al.’s Retrieval-Integration model. In RHM18’s

simulations, role-reversed verbs like “eats” in the sentence, “At breakfast

the egg *eats” were treated by the model as truly anomalous because, during

training, “egg” was never presented in an Agent role. Therefore, in these

role-reversed sentences, the model incorrectly interpreted “egg” as a

Patient, both before and after encountering the verb “eats,” leading to a min-

imal SG update, which mirrored the empirical result. This pattern is consis-

tent with a classic “semantic illusion” interpretation of the N400 reduction

in reversal anomalies, in which comprehenders, at least temporarily, enter-

tain a semantically-driven interpretation of the sentence, based on stereotyp-

ical thematic roles (Kuperberg, 2007; see Kuperberg, 2016 for a more recent

discussion). In contrast to these role-reversed verbs, semantically anomalous

verbs produced a large SG update.

The authors also simulated several other sentence-level phenomena. To

simulate the effects of contextual constraint, certain actions appeared with

restricted object sets during training (“eat eggs,” “eat toast”), while other

actions were relatively non-constraining (e.g., “to like”). Low-probability

endings elicited a similar SG update across high-constraint (“…eats oak”)

and low-constraint (“…likes oak”) sentences. In both cases, the final word

(“oak”) caused the SG layer to update its internal representation to the same

degree, in order to successfully encode the semantic features of the unex-

pected object. This mirrored the empirical result that cloze probability,

not constraint, is the primary determinant of N400 amplitudes in sentence

contexts (Federmeier et al., 2007; Kuperberg et al., 2020; Kutas &

Hillyard, 1984).

The SG model was also able to simulate the related anomaly effect

(Federmeier & Kutas, 1999). To simulate this effect, following the presen-

tation of high constraint contexts, the network was then presented with

three types of endings: expected words, anomalous words that were
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semantically related to the expected words, or anomalous words that were

semantically unrelated to the expected completion. During training, although

these “anomalous” nouns had never been presented with the preceding

verb, the authors introduced different degrees of overlap between these

words’ distributed semantic features, represented in the Probe and Event

Output layers. This ensured that the “related” anomalous words that shared

partially overlapping sets of semantic features with the expected words,

while the “unrelated” anomalous words had no semantic features in com-

mon with the expected word. Consistent with the empirical findings, the

semantically related anomalous endings elicited a smaller update at the SG

layer than the semantically unrelated anomalous completions.

To simulate the effects of word position during sentence processing (Van

Petten & Kutas, 1991), the authors presented the longest sentences in their

training set (e.g.,At breakfast, the man eats egg in the kitchen), and simulated the

N400 produced at each word position. All else kept equal, words presented

earlier in the sentence induced a larger update at the SG layer, resulting in an

approximately linear decline in N400 amplitude as the sentence progressed.

Note, however, that the true probability of the incoming words did not

decrease smoothly across the course of the sentence. For example, although

actions (eats) were presented relatively early in the sentence, they were 100%

predictable in the model’s training set when paired with a specific situation

(breakfast). This surprising finding showed that the model (and the SG layer

in particular) did not perfectly track corpus probabilities, but rather that it

built up more confidence in its predictions as probabilistic cues accumulated

over the course of the sentence.

Despite being trained on complete sentences, RHM18 were also able to

simulate some of the lexical phenomena that were simulated in the

word-level models described in Section 2 (Cheyette & Plaut, 2017;

Laszlo & Armstrong, 2014; Rabovsky & McRae, 2014). During training,

some words were presented more frequently than others. Therefore, the

model was able to successfully simulate the effects of lexical frequency, inde-

pendent of context. Specifically, when presented in isolation, higher fre-

quency words (e.g., egg) elicited a smaller SG update than low frequency

words (e.g., toast). In addition, when the model was presented with

two-word sequences, it was able to simulate N400 priming effects, including

repetition priming (egg—egg vs oak—egg), associative priming (eat—egg vs

play—egg), and semantic feature priming (cereal—egg vs oak—egg). Each of

these priming effects was implemented somewhat differently. As noted

above, during training, associatively related words commonly appeared
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together, while semantically related words shared overlapping units in the

Event Output and Probe layers. In all three manipulations, target words pro-

duced a smaller update at the SG layer when preceded by related (vs

unrelated) prime words.

Finally, the authors carried out a simulation of a set of results reported by

Besson et al. (1992) to determine whether the updates in the SG layer, used

to operationalize the N400, could also drive longer-term learning.

Sentences with either congruous or incongruous endings (e.g., The man eats

eggs/*oaks) were presented to the model, word by word. Each sentence was

presented twice so that the authors could assess the effects of delayed repe-

tition on the simulated N400. As described above, the pattern of activity that

was produced by word n (e.g., eats) implicitly predicted the semantic-

thematic role associated with the subsequent word. Then, when this next

word was presented (n+1, e.g., “eggs”), it produced its own pattern of

SG activity. For the purposes of this simulation, the pattern of activation

produced by this next word was considered the “target” for learning.

The shift in SG activity between word n and word n+1 (corresponding

to the N400 on word n) served as a “prediction error” signal that was back-

propagated to modulate the model’s weights (see RHM18, Supplementary

Discussion for details). The assumption here was that, because the model was

already trained, instead of learning to map a sequence of words to an event

representation, the SG layer activation at the end of the sentence could be

trusted to represent the “ground truth.” Therefore, by minimizing the

change in SG activation induced by incoming words, this “ground truth”

SG state could be reached as early as possible, allowing the model to learn

from new lexical inputs without relying on an explicitly available event

representation.

With this learning procedure, sentence-final words elicited a smaller

N400 on their second presentation (after learning). Moreover, the magni-

tude of this repetition effect was larger on semantically incongruous than

congruous words, mirroring the empirical data (Besson et al., 1992). The

authors argued that this was because the larger N400 induced by the initial

presentation of the incongruous words served as a “temporal difference

error” that led to greater weight updates, i.e., increased learning.

3.3 Sentence gestalt model (2): Rabovsky, 2020
In a follow-up paper, Rabovsky (2020) reported that, with minimal mod-

ifications, the model developed by RHM18 was able to simulate and
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re-interpret an additional effect reported in the prior literature: the so-called

article-induced N400 effect. This effect was first described in an experiment

by DeLong et al. (2005), who observed larger N400 amplitudes to articles

that were phonologically incompatible with an expected noun—for exam-

ple, in the sentence “The day was breezy so the boy went outside to fly an…,” an

is phonologically incompatible with the expected continuation (kite)

because this expected completion begins with a consonant (i.e., “…a kite”

vs “ …an airplane”). The fact that the neural response was sensitive to the

article’s phonological incompatibility with the upcoming word was inter-

preted as evidence that comprehenders predicted this upcoming word’s

phonological form. However, an alternative explanation is that, instead of

reflecting the prediction of the upcoming word’s form, the N400 on the

phonologically marked article reflected a shift in state at the event-level,

which updated the probabilities of the upcoming noun.

To investigate this possibility, Rabovsky (2020) set up the Sentence

Gestalt model so that the form of the indefinite article (a vs an) reliably

predicted the form of the upcoming noun. Specifically, the training proce-

dure was designed so that articles could rule out particular upcoming nouns

(e.g., an was never followed by kite). Mirroring the empirical results of

DeLong et al. (2005), articles that were incompatible with strongly expected

upcoming nouns induced larger updates at the SG layer than articles that

were compatible. This is because the incompatible article provided a highly

reliable cue that the predicted event representation (e.g., a representation in

which<kite> played the role of Patient) was probably incorrect, and there-

fore needed to be modified, inducing a shift at the SG layer.

Notably, subsequent studies (e.g., Ito, Martin, & Nieuwland, 2016),

including a large-scale replication attempt (Nieuwland et al., 2018, but

see Urbach, DeLong, Chan, & Kutas, 2020) found that the article-induced

N400 effect was either absent or much weaker than the effect originally

reported by DeLong et al. (2005). Rabovsky (2020) suggested that the dis-

crepancy across studies may have arisen because the indefinite articles varied

in how reliably they predicted the upcoming word’s phonological form.

To investigate the effect of the article’s predictive reliability, Rabovsky

(2020) modified the model’s training procedure so that the form of the

indefinite article (a vs an) was an unreliable predictor of the form of the

upcoming noun. Specifically, the correlation between the form of the article

and that of the upcoming noun was removed by introducing an intervening

adjective (“…an old kite”; “…a new airplane”). In line with the cue validity
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interpretation, in this simulation, articles that were incompatible with the

expected noun did not elicit a larger N400 than compatible articles.

Based on these observations, Rabovsky (2020) suggested that the

article-induced N400 effect may not directly reflect the pre-activation of

phonological information. Instead, they argued that this effect may be driven

by a shift at the event level when articles provide a reliable cue that ruled out

an otherwise high probability continuation (but see below for discussion of

empirical evidence against this interpretation).

3.3.1 Insights and limitations
RHM18 and Rabovsky (2020) were able to simulate an impressive range of

N400 effects. Given that the model was trained on full sentences, its ability

to simulate N400 effects in arbitrary word sequences (e.g., individual words,

word pairs, word lists, etc.) is particularly striking, providing strong support

for the theoretical perspective that words function as cues to sentence mean-

ing (Elman, 1990, 2009; Rumelhart, 1979), rather than lexico-semantic

entities that must be retrieved independently and then composed into a

higher-order event representation.

The model also addressed some of the limitations of Brouwer et al.’s

Retrieval-Integration model. For example, in RHM18’s Sentence Gestalt

model, the shift of the SG layer was minimal to highly expected words

and to semantic reversal anomalies, mirroring the empirical finding of a min-

imal N400 in these situations. In addition, the model’s alternative account

of role-reversal effects is consistent with the behavioral literature on the

mis-assignment of thematic roles in reversible sentences (e.g., Ferreira,

2003; Gibson et al., 2013), and semantic illusions more generally (see

Erickson & Mattson, 1981; see also Sanford, Leuthold, Bohan, &

Sanford, 2011).

Another strength of RHM18’s approach is that it begins to address the

question of why the brain might compute the internal change-in-state

induced by each incoming word (the measure used to simulate the

N400). Specifically, the model’s successful simulation of long-term repeti-

tion effect on the N400 illustrates how, in principle, a shift in state can be

used as a “temporal difference” signal to drive downstream learning. This

builds on the work by Rabovsky and McRae (2014) by providing a more

biologically and cognitive plausible mechanism that links comprehension

and learning/adaptation.

Despite these successes, RHM18’s Sentence Gestalt model also has some

limitations. First, the claim that the N400 reflects the degree of shift induced
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by new inputs at the event level is at odds with recent empirical evidence,

which suggests that large shifts in event probability alone are not necessarily

a strong predictor of N400 modulation (e.g., Szewczyk, Mech, &

Federmeier, 2021; see also Szewczyk & Wodniecka, 2020). In most situa-

tions, the degree of event-level shift induced by an incoming word will

covary with the lexico-semantic predictability of that word. However, these

constructs can be dissociated. For example, consider the sentence context,

“His skin was red from spending the day at the….” At this point in the sen-

tence, it is likely that the comprehender will have already inferred a

beach-related event. If, however, the comprehender then encounters the

adjective “neighborhood,” they are likely to shift their belief to an event

about a community pool. However, Szewczyk et al. (2021), showed that

a metric that operationalized the magnitude of this type of event-level shift

on the adjective did not predict N400 amplitude as well as the adjective’s

lexico-semantic predictability (see also Federmeier, 2022, box 2, p. 16 for

discussion).

Second, if the N400 effect reflects shifts within a single event-level state,

this would predict that the effects of priming, predictability, and plausibility

on this component should all localize to the same neuroanatomical regions.

Again, however, this is at odds with the empirical data. Whereas the N400

effects of semantic priming (Lau, Phillips, & Poeppel, 2008; Lau, Weber,

Gramfort, H€am€al€ainen, & Kuperberg, 2016) and of predictability in plausi-

ble sentences (Wang et al., 2021) both localize to regions of the left temporal

lobe that support lexico-semantic processing, implausible words evoke an

additional effect within left inferior frontal cortex (e.g., Halgren et al.,

2002; Ihara, Hayakawa, Wei, Munetsuna, & Fujimaki, 2007; Maess,

Herrmann, Hahne, Nakamura, & Friederici, 2006; Marinkovic et al.,

2003; Pylkk€anen & McElree, 2007; Wang et al., 2021), which is thought

to support updates at the event level (see Hagoort & Indefrey, 2014).

These observations are inconsistent with a unitary event-updating account

of the N400.

Relatedly, although the Sentence Gestalt model captures the effects of

contextual facilitation via implicit predictions at the event level, these

implicit predictions did not lead to top-down pre-activation of lexico-

semantic information, encoded at a shorter time-scale at a lower level of

representation. This at odds with evidence that regions of the left temporal

cortex can be pre-activated in constraining contexts (Dikker & Pylkk€anen,
2013; Piai, Roelofs, Rommers, & Maris, 2015; Wang, Hagoort, &

Jensen, 2018; Wang, Kuperberg, & Jensen, 2018).
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A third limitation of the Sentence Gestalt’s model concerns the link

with learning. In their final simulation, the authors demonstrated that their

N400 update measure could be used as a secondary teaching signal, allowing

the model to simulate the effects of longer-term repetition priming.

However, this learning procedure was not applied consistently across their

simulations, and it is not clear what this alternative learning procedure was

actually teaching the model. For example, in the absence of explicit event

labels, the model could learn to minimize changes in the SG layer’s simply

by mapping all word inputs to the exact same pattern of SG activations (e.g.,

a string of zeros). Although this training would efficiently minimize the

magnitude of state updates, the model would also “unlearn” the correspon-

dence between words and their associated thematic-semantic roles. More

generally, it is unclear how the model would calculate this update measure,

which, as noted above, had to be computed externally by the modeler.

3.4 Error propagation model: Fitz & Chang, 2019
3.4.1 Introduction
In the two sentence-level architectures described above (Brouwer et al.,

2017 and RHM18/Rabovsky, 2020), the authors operationalized the

N400 as an internal change-in-state induced by incoming words.

However, neither of these models provided a compelling account of how

(mechanistically) or why (functionally) the language comprehension system

would compute these changes. As noted above, one possibility is that the

N400 is computed implicitly as a byproduct of the process of shifting from

a prior to a new state upon encountering new bottom-up input. However,

this would be at odds with RHM18’s idea that the magnitude of this shift is

explicitly computed and tracked for the purpose of downstream learning.

This issue was tackled head-on in a computational model by Fitz and

Chang (2019). Similar to the word-level Semantic Attractor model by

Rabovsky and McRae (2014), the authors proposed a “prediction error”

account of the N400. Their model explicitly predicted each upcoming

word, compared these lexical predictions to the word that was next encoun-

tered in a sentence, and used this difference—the prediction error—as a bac-

kpropagation signal to drive long-term learning. In a stark departure from all

previous models, Fitz and Chang (2019) proposed that linguistic predictions

(and the N400) are actually generated within the language production

system (“prediction as production,” see Federmeier, 2007; Pickering &

Garrod, 2013), which runs independently and in parallel with sentence
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comprehension. Their model was therefore designed as a production model,

and did not attempt to simulate comprehension per se.

Similar to RHM18, the authors attempted to simulate a wide range of

sentence-level N400 phenomena, including the effects of lexical predictabil-

ity, sentence constraint, word position, role reversals, as well as several syn-

tactic phenomena (e.g., noun-verb agreement). They also aimed to simulate

the influence of these factors on the P600 response, although a description of

these additional simulations is outside the scope of this review. As discussed

under Limitations, not all their simulations on the N400 were successful, and

they were unable to model other findings, including the effects of lexical

frequency, priming, or the effects of semantic overlap between expected

and encountered words during sentence processing.

3.4.2 Model characteristics
Unlike the previous sentence-level models of the N400, Fitz & Chang’s

model’s was not trained to infer an event representation, but rather to accu-

rately predict the next word of an unfolding sequence of lexical inputs. The

model’s architecture is depicted in Fig. 2C. It consisted of a “core”

Sequencing System that was trained to perform next-word prediction,

and a Message System that, during training, sometimes provided additional

event information that supported this process. The Message System was

switched off altogether during the N400 simulations.

The Sequencing System performed next-word prediction by passing

lexical inputs through a series of four layers: PrevWord!Hidden!
Compress!NextWord. The pattern of activation within the final

NextWord layer represented the model’s next-word prediction. The central

Hidden layer was recurrent and received activation from its own

previous state. Another component of the Sequencing System was a

PrevWordHistory layer that represented a running average of the pattern

of activation based on previous inputs.

The Message System functioned to constrain next-word predictions in

the Sequencing System during training. Events were encoded in the

Message System through the connections between a Role layer (where each

unit represented a thematic role: one unit for Agent, another for Action,

etc.) and a Concept layer (where each unit corresponded to the semantic

properties of a word: one unit for <dog>, another for <chase>, etc.).

In this scheme, an event was uniquely represented by forming a temporary

connection between a thematic role unit and its corresponding semantic

units and removing all other connections between the Role and Concept
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layers. For example, the event corresponding to the sentence, “A dog chases a

cat” would be expressed by connecting the Agent, Action and Patient units

in the Role layer to <dog>, <chase> and <cat> in the Concept layer,

with one-to-one connections. In addition to these Role and Concept layers,

which represented the role and concept of the word currently being

predicted, the Message System also included CRole and CConcept

Layers, which were structured identically, but represented the role and con-

cept of the previous word in a sequence. The Message System also included a

CRoleHistory layer, which represented a running average of the pattern of

activation based on previously assigned thematic roles. Finally, the Message

System included an EventSemantics layer that encoded verb alternations

(cf. Levin, 1993) that were relevant for thematic role assignment.

During training, the model’s weights were trained to predict the next

word of sentences which were presented word by word to the PrevWord

layer of the Sequencing System. In 30% of training trials, just before the first

word in a sentence was presented (e.g., the sentence, “A dog chases a cat”),

the model’s Message System was given an event representation of the

upcoming sentence, which included the appropriate set of thematic roles

at the Role layer (Agent-Action-Patient) and their corresponding concepts

at the Concept layer (<dog> <chase> <cat>). To illustrate how training

worked, consider the stage of training after the model had generated a pattern

of activation at the NextWord layer, which corresponded to the prediction of

the second word in the sentence, “She walk –ed.” Note, however, that every-

thing we describe next occurred for every single word in a sentence.

First, the model explicitly compared the predicted pattern (the pattern

generated at the NextWord layer before walk was encountered) with the

target pattern (the vector corresponding to the observed word, walk). The

difference in activity—the prediction error—was backpropagated through

the model in order to later update its weights such that error was minimized

over future iterations of the model.

The vector corresponding to the presented word (walk) was then summed

with its prediction, and this single vector was clamped at the PrevWord layer.

This input at the PrevWord layer then activated the corresponding semantics

and thematic role of the word, walk, at the CConcept layers and CRole

(respectively) of theMessage System,which, in turn, fed into theHidden layer

of the Sequencing System. This Hidden layer also received information from

the CRoleHistory and from the EventSemantics layer of theMessage System,

as well as information about the full set of prior lexical inputs from the

PrevWordHistory layer in the Sequencing System. The Hidden layer then
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combined all these inputs, and, from here, generated new predictions about

the next word through two routes.

The first route was within the Sequencing System itself. Information in

the Hidden layer was passed, via the Compress layer, to theNextWord layer.

The second route was through the Message System. Information in the

Hidden layer passed to the Role and Concept layers, which then passed

information to the NextWord layer. Together, these two routes generated

a predicted output pattern within the NextWord layer in the Sequencing

System. The cycle then began again for the next word in the sentence

(in this case, this “word” was the marker -ed).

The model’s lexicon consisted of 88 tokens which were either words

(e.g., dog) or marker morphemes (e.g., the progressive -ing). The model

was trained on 50,000 sentences (each presented twice during training), pro-

duced by a symbolic generative grammar, which was designed to teach the

model a range of semantic and syntactic regularities (cloze probability,

noun-verb number agreement, tense inflection, etc.).

3.4.3 N400 simulations
For all N400 simulations, the Message System was switched off, and the

model no longer had access to event representations, prior to sentence onset.

Instead, the Sequencing System had to predict the next word based only on

the preceding context. The authors operationalized the N400 as the differ-

ence between the target pattern (the observed word) and the model’s prior

prediction (the pattern of activation produced at the NextWord layer, at the

previous time-step), which they referred to as a “prediction error.” As dis-

cussed above, during training, this prediction error played a crucial role in

triggering the necessary weight updates that would minimize the average

prediction error produced over future iterations.

As in RHM18’s model, the authors simulated the effects of predictability

and contextual constraint by manipulating how often particular verb-object

pairs were presented during training. For example, the verbs drink, taste and

take were presented with the object water 60%, 15% and 4% of the time,

respectively. As expected, after training, the model showed progressively

smaller prediction errors on the final critical word as contextual predictabil-

ity increased (e.g., A teacher was drink/taste/take -ing the water) (cf. Kutas &

Hillyard, 1984; DeLong et al., 2005). Moreover, when the model was pres-

ented with high and low constraint sentences (e.g., high constraint: the

woman will sip….most expected ending: tea (60%); low constraint: the woman

will sniff…most expected ending: wine (40%)), the prediction error elicited

164 Samer Nour Eddine et al.



by an unexpected critical word (e.g., water) did not differ between the high

and low constraint conditions. This is again consistent with the empirical

literature (Federmeier et al., 2007; Kuperberg et al., 2020; Kutas &

Hillyard, 1984).

Also similar to RHM18, the authors were able to simulate the effect of

word position on the N400 (Payne et al., 2015; Van Petten & Kutas, 1990,

1991): they found that the prediction errors tended to decrease for later word

positions in congruous sentences (A grandma give -ed the clerk a beer).

Extending RHM18’s findings, they further showed that this word position

effect was not produced in semantically incoherent sentences (A pencil give

-ed the coffee a friend), again mirroring the empirical findings. These findings

suggest that the model was able to make increasingly more accurate predic-

tions as the sentence progressed, but only when the sentence was semanti-

cally coherent.

The authors also attempted to simulate patterns of neural activity (N400/

P600) when processing different classes of syntactic violations (noun-verb

number agreement violations: Hagoort, Brown, & Groothusen, 1993; tense

inflection violations: Allen, Badecker, &Osterhout, 2003; word category vio-

lations: Friederici, Hahne, & Mecklinger, 1996, and verb subcategorization

violations: Osterhout & Holcomb, 1992), as well as role reversal anomalies

(Hoeks et al., 2004; Kim & Osterhout, 2005; Kolk et al., 2003; Kuperberg

et al., 2003), albeit unsuccessfully. To simulate the effects of role reversal

on the N400, the authors compared active sentences (The woman is take

-ing the pencil) with their role-reversed counterparts (The pencil is take -ing

the woman). However, at the critical morpheme (-ing), the model showed a

larger prediction error on the implausible reversals, which is inconsistent with

the null N400 effects reported in the ERP literature. Similarly, the model also

produced larger prediction errors to certain syntactic violations (The man will

sip -ed the beer) than non-violated controls. Although these effects were small,

and somewhat variable across syntactic manipulations, they are generally

inconsistent with the empirical findings, which report no N400 modulation

on purely syntactic violations.

Finally, like RHM18, Fitz and Chang (2019) successfully simulated the

interaction between predictability and long-term repetition on the N400,

this time focusing on empirical findings reported by Rommers and

Federmeier (2018). In this simulation, the model was presented, word by

word, with sentences that either had predictable endings (e.g., Alfonso has

started biking to work instead of driving his car) or unpredictable endings (e.g.,

Jason tried to make space for others by moving his car). After each sentence,
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the model’s weights were updated, and then a second sentence was pres-

ented. This second sentence either had the same sentence-final word as

the original sentences (Repeated) or it had a different sentence-final word

(New). Smaller prediction errors were produced by the sentence-final words

in the Repeated than the New condition. Moreover, mirroring the empir-

ical findings, this repetition effect on the simulated N400 was larger when

the initially-presented word was unpredictable than when it was predictable.

This effect can be explained intuitively within this prediction error frame-

work because larger prediction errors drive greater weight updates.

Therefore, a large prediction error produced by an unpredictable word

on the first presentation of a sentence would have led the model to generate

stronger predictions for this word on subsequent trials, resulting in a larger

reduction of the N400 when these predictions were confirmed in Repeated

(vs New) sentences.

3.4.4 Insights and limitations
By linking the N400 to prediction error, computed for the purpose of

downstream learning, Fitz and Chang (2019)’s Error Propagation model

provides an important extension of the previous sentence-level approaches.

Building on the word-level model by Rabovsky and McRae (2014), and

one of the simulations carried out by RHM18, they showed that the

N400, operationalized as lexical prediction error, can serve as signal that

drives longer-term learning. Like any supervised connectionist model, the

targets for learning in this model had to be provided externally by the mod-

eler. However, unlike Rabovsky andMcRae (2014) in which each semantic

target was provided somewhat arbitrarily, in Fitz and Chang’s model, each

target was provided as the subsequent word in a connected sentence,

mirroring the process of “natural” language comprehension.

There were, however, important limitations. The model was trained to

carry out next word prediction. Therefore, it was successful in being able to

explain the sensitivity of the N400 to contextual probability, i.e., graded

cloze effects (DeLong et al., 2005; Kutas & Hillyard, 1984) and word posi-

tion effects (Payne et al., 2015; Van Petten & Kutas, 1990, 1991). However,

it was less successful in simulating other sentence-level phenomena. For

example, in the empirical literature, semantic role reversal anomalies

(Hoeks et al., 2004; Kim & Osterhout, 2005; Kolk et al., 2003;

Kuperberg et al., 2003) and syntactic violations (Allen et al., 2003;

Osterhout & Holcomb, 1992 ; Osterhout & Mobley, 1995) generally show

no effect on the N400. However, in Fitz and Chang’s Error Propagation
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model, these manipulations produced clear simulated N400 effects. In the

case of reversal anomalies, the authors suggested that their simple grammar

may have artificially inflated the predictability of congruous continuations,

resulting in an N400 effect. They also note that small N400 differences are

sometimes observed on reversal anomalies. However, these effects are quite

weak and typically only appear with longer distances between verbs and

arguments (e.g., Chow, Lau, Wang, & Phillips, 2018).

The authors also made no attempt to simulate some of the other phe-

nomena that were successfully simulated by RHM18: the related anomaly

effect (cf. Federmeier & Kutas, 1999) and simple semantic or associative

priming effects. This is not surprising, and brings us to the fundamental

problem with Fitz and Chang’s Error Propagation model: By framing the

N400 as a byproduct of the language production system, it ignores the rela-

tionship between the N400 and language comprehension altogether. To com-

prehend language accurately and efficiently, we must predict and infer not

only upcoming individual lexical items, but also the semantic features asso-

ciated with these words, and, ultimately, the events that are conveyed by

sequences of words. Fitz and Chang’s Error Propagation model, however,

was trained only to predict specific lexical items. In contrast to all previous

models of the N400 discussed thus far, these words were not linked to dis-

tributed semantic features; no features were shared between words, and the

model did not actually infer word meanings. This explains why the model

would be unable to simulate effects of semantic overlap either during prim-

ing or sentence comprehension. Even more fundamentally, and in contrast

to RHM18’s Sentence Gestalt model, upcoming word prediction played no

role in inferring whole events (the purpose of comprehension). This failure

to infer events explains why the model was unable to simulate effects like

associative priming that rely on the co-occurrence of words around canon-

ical events.

4. Summary of models in relation to cognitive
and biological constraints

In the previous sections, we reviewed several computational models of

the N400, each with their own set of strengths and weaknesses. Although in

combination, these word-level and sentence-level models were able to

account for an impressive range of empirical phenomena, none of them pro-

vided a complete account of the N400 that was both cognitively and bio-

logically plausible. In this section, we summarize these models in relation
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to a set of cognitive and biological constraints that have informed our under-

standing of both language comprehension and the N400 over the past few

decades. In the following section, we will turn to a new framework of

understanding the N400 known as predictive coding, which satisfies many

of these constraints.

4.1 Explanation of empirical phenomena
As we have seen, the N400 is influenced by a large number of factors,

including the lexical properties of single words, minimal contexts (priming),

and wider sentence contexts (including the incremental effects of contextual

predictability). Ideally, a computational model of theN400 should be able to

account for this broad range of empirical findings parsimoniously, within a

single framework; that is, it should be able to process arbitrary orthographic

(or phonological) inputs (both words and non-words), and it should be pos-

sible to independently manipulate both lexical properties (e.g., frequency or

concreteness) and contextual factors, as well as interactions between these

variables, to examine their effects on the simulated N400.

Currently, no single model has been able to fulfill this criterion. Indeed,

there is a strong divide in the empirical coverage of word-level and

sentence-level models. On the one hand, the models by LPAC and

Rabovsky and McRae (2014) were very successful in simulating a wide

range of lexical and priming effects. However, the ability to simulate

sentence-level N400 effects (cloze probability, semantic congruity effects,

related anomaly effects, etc.) was completely outside the scope of these

models. Conversely, the sentence-level models were able to simulate an

impressive range of contextual phenomena. However, they were unable

to simulate all the effects simulated by the word-level models. For example,

even though RHM18 were able to explain the effects of lexical frequency

and priming, like all other sentence-models, it had simplified (localist) lexical

representations that didn’t connect to orthography (or phonology). It was

therefore unable to simulate the effects of orthographic neighborhood

and was unable to process non-words.

4.2 Incorporation of interactive, hierarchically organized
representations

In order to incorporate interactions between lexical and contextual factors,

we believe that models of the N400 should incorporate a hierarchical structure

that enables information to be represented at different temporal scales
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(e.g., letters, words, events), and for levels of this hierarchy to continuously

interact through both top-down and bottom-up connections. This type of

architecture would be consistent with what we know about the hierarchical

organization of language ( Jackendoff, 2002), the strong interactivity across

levels of linguistic representation during processing (e.g., MacDonald et al.,

1994; Tanenhaus & Trueswell, 1995), and the continuous interaction

between linguistic representations and the higher-level event (and broader

situation model) that is being incrementally inferred from the input

(Kuperberg, 2013; McRae & Matsuki, 2009). It would also be consistent

with what we know about the hierarchical organization of the cortex,

and the neurobiology of language processing, with different areas of cortex

being specialized for encoding and processing information at different levels

of information at different time scales (e.g., Dehaene, Cohen, Sigman, &

Vinckier, 2005; Hickok & Poeppel, 2007; Price & Devlin, 2011; Wang

et al., 2021).

The notion of continuous top-down/bottom-up interactions across

hierarchically-organized layers of representation was captured in the seminal

interactive activation models of written word recognition (McClelland &

Rumelhart, 1981) and speech perception (McClelland & Elman, 1986) that

have inspired a huge body of psycholinguistic work over the past few

decades. However, the word-level N400 models discussed above (LPAC;

Rabovsky & McRae, 2014) relied exclusively on bottom-up inputs, and

these models lacked a contextual layer that could influence ongoing

lexico-semantic processing.

Conversely, none of the sentence-level N400 models reviewed above

included a lower-level orthographic layer, and none of these models fully

capture both hierarchical structure and interactive principles. For example,

in Fitz and Chang’s Error Propagation model, even though there were mul-

tiple types of representation (lexical items, semantic-thematic roles, events),

these did not influence the comprehension system at all. RHM18’s Sentence

Gestalt network did not distinguish lexical, semantic and event information;

that is, lexical inputs were mapped directly on to event representations via an

unstructured hidden layer, with no intermediate levels of representation,

and the N400 reflected incremental updates within a single dynamic event

state. The notion of hierarchy was best expressed in Brouwer et al.’s

Retrieval-Integration model, which captured linguistic information at

different time-scales (word-level semantics vs sentence-level events) by

incorporating distinct Retrieval and Integration modules. However, as dis-

cussed earlier, the Integration layer in this model did not actually provide
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top-down pre-activation of upcoming semantic representations in the

Semantic Retrieval layer.

The idea that higher-level event representations can generate predictions

that can be propagated down to lower levels of a representational hierarchy is

a central component of predictive language comprehension (DeLong et al.,

2005; Federmeier, 2007; Kuperberg & Jaeger, 2016). This type of top-down

predictive pre-activation goes beyond the type of implicit temporal predictions of

upcoming semantic-thematic roles that are implemented as recurrent feed-

back connections at the event level in Brouwer et al.’s Retrieval-Integration

model and in RHM18’s Sentence Gestalt model. These top-down predic-

tive frameworks posit that, because higher-level event information is

encoded at a longer spatiotemporal scale than lower-level lexico-semantic

information, then this is exploited to provide top-down pre-activation at

lower lexico-semantic levels before an anticipated input appears (see

Kuperberg & Jaeger, 2016, page 39–44 for a detailed discussion). Indeed

there is neurobiological evidence that supports this type of top-down

pre-activation. For example, MEG studies have reported differences in

oscillatory activity within left temporal regions, which are thought to sup-

port lexico-semantic processing, following highly predictive vs less predic-

tive contexts (Dikker & Pylkk€anen, 2013; Piai et al., 2015; Wang, Hagoort,

et al., 2018). In addition, we have shown that the left ventromedial temporal

lobe produces item-specific temporal patterns of neural activity that correspond

to the pre-activation of specific individual words (e.g., “baby” in the context

of “In the crib, there is a sleeping …”) (Wang, Kuperberg, et al., 2018).

None of sentence-level models reviewed above fully capture this type of

top-down predictive lexico-semantic pre-activation.

4.3 Cognitive plausibility: Facilitatory effects of prior context
during language processing

A central claim of all cognitive theories of the N400 is that the amplitude

reductions produced by priming and contextual predictability are linked

to facilitated processing of an incoming target word. This link between

N400 attenuation and cognitive facilitation has been discussed in different

ways in the literature. In the priming literature, the reduced N400 to primed

(vs unprimed) targets has been taken to reflect easier access to the

lexico-semantic representation of that target. In the sentence processing

literature, it has been variously argued that the smaller N400s to predictable

or congruous sentence continuations is linked to facilitated “integration” of

words into their prior context (e.g., Hagoort et al., 2009), to facilitated
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access/retrieval of lexico-semantic information that has already been

pre-activated (Federmeier & Kutas, 1999; Lau et al., 2008), or to both facil-

itated integration and retrieval within a dynamically interactive system (e.g.,

Baggio & Hagoort, 2011). What is common to all of these accounts is the

assumption that more predictable words produce a smaller N400 because

they are relatively “easier” to processf. At a computational level, this facil-

itated processing would translate on to how easily a model settles on a

particular target representation in the 300–500ms (N400) time window.

However, not all the models that we have discussed capture this central idea.

The discrepancy between contextual facilitation and the simulated N400

response was most apparent in how the Semantic Activation models simu-

lated priming (Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014). Recall

that, in these models, without additional assumptions, primed words would

produce a larger simulated N400 response (more total semantic activation)

than unrelated words. To remedy this issue, the authors introduced a

decay-driven inhibition mechanism. However, while this correctly resulted

in a reduction in the simulated N400, the inhibition of semantic features also

made primed target words more difficult to access (rather than easier to

access), running contrary to all current theoretical models of priming.

This particular issue was side-stepped by Rabovsky and McRae (2014)

and Fitz and Chang (2019), who linked the N400 to “prediction error”

rather than to the total activation of semantic features. However, in both

these models, prediction errors failed to influence the activation of semantic

features. Specifically, in Rabovsky and McRae’s word-level model, predic-

tion error was defined as the “distance” between the current state of seman-

tic activity induced by the input and an external target pattern that was only

available to the modeler. Therefore, this error had no influence on the

model’s own activations during online processing. Similarly, in Fitz and

Chang (2019), prediction errors were calculated outside the language com-

prehension system, and they were not used to update the model’s internal

weights until the end of the sentence. Therefore, it was unclear how this

could lead to facilitation, or, indeed, have any influence on online

processing.

f We note two points here. First, it is, of course, logically possible that the N400 reflects a neural signal

that is only superficially correlated with facilitation. However, to the extent that this correlation sys-

tematically occurs in such a wide variety of contexts, we think that there is likely to be a deeper rela-

tionship between the attenuation of the N400 and facilitation. Second, the notion of contextual

facilitation on the N400 is closely related to contextual facilitation on behavior. We return to this point

in Section 6.
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Brouwer et al.’s model begins to capture the idea of cognitive facilitation

by simulating the N400 reduction to associated (vs non-associated) words in

sentence contexts as a smaller shift at the Semantic Retrieval layer. However,

as discussed earlier, a failure to pre-activate information at the Semantic

Retrieval layer, prior to word onset, meant that even highly predictable

sentence-final verbs induced large shifts in state, which is inconsistent with

most conceptions of facilitated processing.

Of all the sentence-level models, the one that best captures facilitatory

effects on the N400 is RHM18’s Sentence Gestalt Model. When the

sentence-level meaning was fully predictable, incoming words induced only

a minimal shift in the SG layer. In other words, it was easier for the model to

settle on an event state when the preceding context was predictable than

unpredictable. On the other hand, as discussed in Section 3, this formaliza-

tion of the N400 as a shift within a single-state system is not supported by

MEG and intracranial data, which show that the facilitatory effects of prim-

ing, predictability and plausibility on the N400 do not all localize to the same

neuroanatomical regions.

4.4 Biological plausibility: An explicit and biologically plausible
linking function

Another important constraint in developing any model of the N400 is its

biological plausibility. In other words, the structure and computations of

these models should, in principle, be implementable in neural tissue. In par-

ticular, the model should specify a biologically plausible mechanism that

links its N400 construct (semantic activation, prediction error, shift in state)

to differences in neural activity that can be recorded at the surface of the

scalp. Moreover, this construct should ideally be able to capture the mor-

phology and latency of the N400 waveform.

The Semantic Activation models satisfy this criterion best. Taking a step

in the direction of biological realism, LPAC explicitly constrained their

model architecture to reflect certain established neurobiological constraints.

In addition, the linking function that translated the model’s activation into a

neural signature is clear. Specifically, if individual processing units in this

model correspond to cortical neurons (p. 273, Laszlo & Plaut, 2012), any

process that increases the total activation (or firing rate) of these units would

plausibly give rise to a larger ERP response at the scalp. Finally, this was the

only model in which the simulated N400 traced out a rise-and-fall trajec-

tory, with a relatively constant peak latency across different classes of stimuli,

similar to the N400 itself. This contrasts with all the other models we
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reviewed, which used architectures that did not take biologically-motivated

constraints into account.

In the error-based accounts, the N400 was computed explicitly as the

difference between the current semantic state and an ideal target

(Rabovsky &McRae, 2014), or between a word input and the model’s prior

lexical prediction (Fitz & Chang, 2019). However, as discussed above,

because these error measures were calculated outside the model, the direct

link with ongoing neural activity was unclear. In the change-of-state

accounts (Brouwer et al., 2017; RHM18), the assumption was that the con-

struct reflecting the N400 was generated implicitly as an update between

two successive time points. However, it was left unspecified how or why

this change in state would lead to an overall increase in neural activity at

the scalp surface.

Finally, another important criterion is the biological plausibility of

the model’s learning procedure. In all the models of the N400 reviewed

above, the model’s weights were trained using backpropagation, and, in

three of these models, the authors directly linked the errors used for bac-

kpropagation to the simulated N400 response (Fitz & Chang, 2019;

Rabovsky & McRae, 2014, RHM18 in one simulation). However, several

aspects of the backpropagation algorithm are known to be biologically

implausible (Grossberg, 1987; Whittington & Bogacz, 2019). For example,

it is unclear how error information computed outside the model would be

transmitted “backwards” across multiple layers of cortex to update weights.

As we discuss in the next section, algorithms that rely on more local error

representations (e.g., Lillicrap, Santoro, Marris, Akerman, & Hinton,

2020; see Whittington & Bogacz, 2019, for discussion) may be necessary

to develop a more biologically realistic account of the N400.

5. A predictive coding account of the N400

We now turn to a computational framework known as predictive coding

that accommodates many of the constraints described above. In the language

comprehension literature, the term, “predictive coding” has sometimes

been used loosely to refer any form of top-down predictive processing in

the brain, or to any framework of language comprehension that involves

the production of “prediction error.” However, the term “predictive

coding” actually describes a specific computational algorithm and architec-

ture, with a particular arrangement of feed-forward and feedback connec-

tions, that was first developed in the visual system to simulate
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extra-classical receptive field effects (Rao & Ballard, 1999; Spratling, 2012,

2013, 2014; see also Mumford, 1992). Over time, predictive coding has

been expanded into a more general theory for how information is transmit-

ted between cortical areas, allowing the brain to perform probabilistic infer-

ence in multiple domains of perception and cognition (Clark, 2013; Friston,

2005; Spratling, 2016), including lower levels of language processing, such as

speech perception (Blank & Davis, 2016; Sohoglu & Davis, 2020) and visual

word recognition (see Heilbron, Richter, Ekman, Hagoort, & de Lange,

2020; Price & Devlin, 2011).

Predictive coding is fundamentally an optimization algorithm. One of its

central claims is that each level of cortical representation has a distinct pop-

ulation of “state units” that encode its internal representations and “error

units” that pass information between cortical areas (Friston, 2005; Rao &

Ballard, 1999; Spratling, 2017). The patterns of state activity encoded in a

given layer can be thought of as a dynamically changing “target” pattern

for a higher-level state. At each point in time, state units at higher cortical

layers generate a top-down prediction (or reconstruction) of this target pattern

at the level below. Lower-level “error units” then calculate the residual dif-

ference in information between this top-down prediction and the target state

pattern, either by subtraction (cf. Rao & Ballard, 1999) or division (cf.

Spratling, De Meyer, & Kompass, 2009), depending on the precise predic-

tive coding algorithm.

The error units compute two types of residual information. The first is

prediction error—the information that is encoded in the target state, but not in

the current top-down prediction. The second is top-down bias—the informa-

tion that is encoded in the top-down predicted state but not in the target

state. These two types of residual information play different roles in the algo-

rithm. First, prediction error is passed up to the cortical level above where it

is used to update higher-level state units. This allows these higher-level states

to generate more accurate top-down predictions/reconstructions on the

next iteration of the algorithm. Second, the top-down biasmodifies the target

state pattern at the same cortical level, bringing it closer to the prediction

from the level above. Therefore, at each iteration of the algorithm, the state

at each level of the cortical hierarchy is modified in two ways: one that helps

it better predict its lower-level target pattern (driven by bottom-up predic-

tion error), and another that helps it serve as a better target to a yet

higher-level state (driven by top-down bias). Over multiple iterations of

the algorithm, the magnitude of prediction error and top-down bias grad-

ually decreases, and the model settles into a global state that can accurately

explain the bottom-up input at multiple levels of representation.
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As several researchers have pointed out, the N400 is very naturally inter-

preted as the new lexico-semantic information, encoded within the bottom-

up input, which has not already been predicted by the prior context,

i.e., as the magnitude of lexico-semantic prediction error within a predictive

coding framework (e.g., Bornkessel-Schlesewsky & Schlesewsky, 2019;

Kuperberg, 2016; Kuperberg et al., 2020; Xiang & Kuperberg, 2015).

Note that, in this framework, the term “prediction error” does not correspond

to the detection of a linguistic anomaly or to a violation of a strong top-down

prediction. Instead, similar to the previous prediction error computational

frameworks discussed above (Fitz & Chang, 2019; Rabovsky & McRae,

2014), it simply refers to the difference between a “target” pattern of

lexico-semantic activity and the lexico-semantic activity that was predicted

by the model. However, there are four important differences between the

prediction errors that are computed during predictive coding and the predic-

tion errors or shifts in state have been used to simulate the N400 in previous

computational models.

First, in these previous models, the “target” pattern of activity consti-

tuted a single input that was provided outside the model, whereas in predic-

tive coding, the target pattern constitutes a dynamic state within the model

that is continually updated by the model’s algorithm. Second, in these

previous models, errors were computed outside the model. In predictive

coding, however, errors are computed within the model, locally at each level

of representation. Third, in these previous models, the error produced by a

particular input was computed after a lexical item or its semantic features

were activated, in order to drive subsequent learning. In predictive coding,

the computation of prediction error drives comprehension itself (i.e., the

process of inferring the semantic features corresponding to the input),

although as we discuss below, these errors can, in principle, also be used

for downstream learning.

Finally, in previous models, “prediction error” was used to simulated

either the effects of lexical factors (e.g., orthographic neighborhood and

semantic richness) or the effects of context on the N400, raising questions

of how this single univariate signal can explain the “multiplicity of factors”

that are known to affect N400 amplitude (see Federmeier, 2022, box 2,

p. 16). Hierarchical predictive coding begins to address these concerns by

positing a continuous interaction across levels of representation, allowing both

higher-level and lower-level sources of information to influence the mag-

nitude of prediction error computed during real time comprehension

(Friston, 2005; Mumford, 1992; Rao & Ballard, 1999).
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In the sections below we describe a hierarchical Predictive Coding

model of lexico-semantic processing, implemented in our own lab, which

simulated the N400 as the magnitude of lexico-semantic prediction error

computed by a predictive coding algorithm. Similar to the models of the

N400 described above, we first explain our motivation for this work; we

then describe the specific architecture of this model and our N400 simula-

tions. Finally, we discuss the insights of this approach in relation to the four

criteria outlined above.

5.1 Predictive coding model: Nour Eddine, Brothers, Wang,
Spratling, & Kuperberg (n.d.)

5.1.1 Introduction
In developing our Predictive Coding model, we had three major goals. First,

we wanted to determine if the same predictive coding principles that can

explain neural activity in the visual and auditory systems could be used to

simulate the N400. We therefore adopted the same processing algorithm

and the same network architecture that has previously successfully simulated

various perceptual and cognitive phenomena (Spratling, 2012, 2013, 2014,

2016), changing only the model’s internal representations (orthographic,

lexical and semantic).

Second, we were interested in whether a single model can account for

both lexical and and contextual-level effects on the N400. Specifically, we

aimed to account for the effects that were captured by the word-level models

reviewed in Section 2, including lexical frequency, orthographic neighbor-

hood size, semantic richness, repetition priming and semantic priming. We

also aimed to simulate an additional effect that these previous models were

not able tosimulate—the larger N400 elicited in response to pseudowords

than to words (cf. Bentin, 1987; Holcomb et al., 2002; Meade et al.,

2018). In addition, at the sentence-level, we aimed to simulate several of

the contextual effects that were successfully simulated by RHM18, includ-

ing the effects of cloze probability (DeLong et al., 2005; Kutas & Hillyard,

1984), the null effect of constraint (Federmeier et al., 2007; Kutas &

Hillyard, 1984), and the effect of semantic overlap between expected and

presented words (Federmeier & Kutas, 1999; Kutas & Hillyard, 1984).

We also aimed to simulate the effect of orthographic overlap between expected

and presented words (DeLong, Chan, &Kutas, 2019; Ito, Corley, Pickering,

Martin, & Nieuwland, 2016; Laszlo & Federmeier, 2009), which was not

simulated in previous models. For example, Laszlo and Federmeier (2009)

showed that the N400 was attenuated on both words and non-words that
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were anomalous, but shared orthography with an expected completion (e.g.,

a reducedN400 to dish or wush, if the sentence constrained strongly forwish).

Finally, in contrast to previous models, we aimed to simulate interactions

between the top-down effects of contextual predictability and lexical factors.

Our third goal was to determine whether the lexico-semantic prediction

error, computed by error units, would mirror the morphology of the N400

effect as it unfolded over time. As noted above, thus far, only the Semantic

Activationmodels succeeded in accounting for theN400’s morphology, and

they did so by inducing an initial excitatory imbalance in the network

followed by a delayed inhibition. In contrast, predictive coding explains

the upslope and downslope of ERP components in terms of the rise and fall

in prediction error as the model converges on an accurate state-unit repre-

sentation that “switches off” lower-level error (Friston, 2005).

5.1.2 Model characteristics
The model’s architecture is shown in Fig. 3A. It was organized hierarchi-

cally, with four layers and three levels of linguistic representation (ortho-

graphic, lexical, semantic). As in all predictive coding architectures, each

level of representation had distinct populations of error units and state units.

The lowest orthographic level included a set of 104 error units and 104 state

units, which encoded 26 letter identities (A–Z) at four possible spatial

positions (cf. McClelland & Rumelhart, 1981). The middle lexical level

consisted of a set of 1,579 lexical state/error units; the units in each set cor-

responded to the 1579 four-letter words in the model’s lexicon (e.g., lime,

corn). The third semantic level consisted of a set of 12,929 semantic state/error

units, which each represented a unique semantic feature (e.g., <plant>,

< sour>; cf. Rabovsky &McRae, 2014). The highest layer of the hierarchy,

which only had state units, was the “dummy layer”; these 1579 units allowed

the modeler to provide top-down predictions that are thought to be gener-

ated based on a higher-level event state during incremental sentence

comprehension.

Critically, the precise connections between error and state units, within

and across layers, was based on predictive coding principles. In particular,

state units at consecutive levels communicated exclusively through error

units. Therefore, at each level, error units were connected one-to-one to

state units at the same level, and had symmetric feedforward and feedback

connections to and from the state units at the higher level.

The connection weights were hand-coded as matrices that described the

contingencies/mappings between levels. For example, orthographic error
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units coding for L, I, M, and E had feedforward connections to, and feed-

back connections from, the lexical state unit coding for lime. Similarly, each

lexical error unit (e.g., lime) was only connected to its corresponding seman-

tic state units (e.g., < sour>, <plant>, etc.). As described further below,

the model was set up to simultaneously capture lexical frequency, semantic

richness, orthographic neighborhood and semantic relatedness.

Note that, unlike classic Interactive Activation connectionist models

(e.g., Chen & Mirman, 2012; McClelland & Elman, 1986; McClelland &

Rumelhart, 1981), predictive coding architectures have no lateral inhibitory

connections between state units. Instead, state units at a given level compete

by inhibiting the inputs of their neighbors, i.e., by suppressing bottom-up

prediction errors (see Spratling, 2008 for discussion).

In this model, we implemented the Predictive Coding/Biased

Competition-Divisive Input Modulation algorithm (Spratling et al.,

2009). In this formulation, prediction errors are calculated by division rather

than subtraction (Prediction Error¼State/Prediction; Top-down Bias¼
Prediction/State). This ensured rapid convergence of the algorithm, and also

guaranteed that the activity across all units remained non-negative, similar to

biological neurons. We operationalized the N400 as the magnitude of

lexico-semantic prediction error produced by lexical and semantic error

units in the model.

Fig. 3 Predictive Coding Model. (A) Architecture. Each level of representation has a dis-
tinct population of state and error units (except for the highest level). State units pass a
copy of their state activity (St) to the error units at the same level (dashed arrows), and
send a top-down Prediction (Pr) to the level below (blue arrows). Error units compute
two quantities: Prediction Error (PE) and top-down Bias (tdB). Prediction Error is com-
puted at each level by dividing the state at that level by the top-down Prediction,
and this is passed up to update the state at the level above (red arrows). Top-down
Bias is the reciprocal of this, computed by dividing the top-down prediction by the state
at that level, and the result is copied to the state units at that level (dashed arrows). At
each iteration, the N400 is operationalized as the sum of the Prediction Error at the lex-
ical and semantic levels (indicated with an asterisk). Solid arrows denote a hand-coded
mapping from one layer to another. Dashed arrows denote a “copy” operation. Ovals
denote state units. Half-arches on top of the ovals denote error units. Color is used
to denote the level of representation, with yellow denoting orthographic form, black
denoting lexical, and pink denoting the semantic level. The dummy event state units
are indicated with a gray oval. (B) The time course of the lexico-semantic Prediction
Error (simulated N400) produced in two simulations, exploring the influence of lexical
frequency (top) and cloze probability (bottom). High frequency words elicited a smaller
prediction error than low frequency words; and Prediction Error was inversely graded
with contextual predictability. Shading represents �1 standard error of the mean
across items.
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5.1.3 N400 simulations
To simulate the N400 on each trial, an orthographic state (L-I-M-E) was

clamped at the bottom of the network. We then computed the total predic-

tion error produced by both lexical and semantic error units at each iteration

of the algorithm. This resulted in a full time course of the simulated N400,

as the model settled into a stable state at each level.

In all simulations, we found that the time course of these prediction

errors mirrored the time course of theN400, see Fig. 3B. After stimulus onset,

lexico-semantic prediction error rose quickly to a peak, as new state units were

activated in the model, and could not be explained (suppressed) by predic-

tions/reconstructions from the level above. These errors then gradually fell

as the model converged on a set of lexical, semantic and dummy event states

that could accurately explain the pattern of orthographic activity.

For all of the simulations described below, we selected a set of 512 critical

words from the model’s lexicon whose lexical variables were uncorrelated

(orthographic neighborhood size, lexical frequency, semantic richness).

This allowed us to examine the effects of each lexical variable, while holding

the others constant.

5.1.3.1 Bottom-up lexical simulations
Similar to previous models, the orthographic neighborhood size of each

word was determined based on the number of overlapping words in the

model’s internal lexicon. We found that words with more orthographic

neighbors (e.g., core) elicited a larger lexico-semantic error than words with

few neighbors (e.g., kiwi) (cf. Holcomb et al., 2002; Laszlo & Federmeier,

2007, 2011, 2014). This occurred because high neighborhood words par-

tially activated the lexical and semantic state units of their orthographic

neighbors, resulting in lexico-semantic prediction errors that were relatively

non-specific. For example, when the model was presented with the input

C-O-R-E, it attempted to minimize the prediction error on the C, O

and R orthographic units by partially activating a large number of partially

compatible lexical state units (corn, corp, cork, etc.). These lexical errors were

then passed to the semantic level, generating larger prediction error

responses throughout the network. Eventually, the model always settled

on the correct set of lexical and semantic states, but this process triggered

larger prediction errors in the presence of orthographic competitors.

Replicating Laszlo and Plaut (2012), the model also produced robust

neighborhood effects even when processing non-word stimuli (cf. Laszlo

& Federmeier, 2007): for both words and non-words, we observed a
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strong positive correlation between the magnitude of lexico-semantic error

and orthographic neighborhood size. Notably, unlike any previous model,

we also found that non-word inputs (e.g., W-U-S-H) elicited a greater

lexico-semantic prediction error than real words, even when matched on

orthographic neighborhood (cf. Holcomb et al., 2002; Meade et al.,

2019, 2018; but see Laszlo & Federmeier, 2011). This is because

pseudowords activated a combination of lexical and semantic state units

(e.g., wish, wash, rush, lush) in order to minimize orthographic prediction

errors at each letter position. Because there was no single lexico-semantic

state to suppress these prediction errors, the simulated N400 remained

higher, overall, compared to real-word inputs.

Lexical frequency was simulated by introducing a stable top-down

“prior” in the model. This was implemented by modifying the top-down

connections between higher-level state units and lower-level error units;

specifically, we increased the strength of each non-zero feedback connection

weight by a positive value, proportional to each word’s SUBTLEX-US fre-

quency (Brysbaert & New, 2009). At a given level of state unit activity, units

associated with higher frequency words produced stronger predictions, all-

owing this word to be inferred more easily. As a consequence, we found that

higher frequency inputs elicited a smaller lexico-semantic prediction error

than lower frequency inputs (cf. Rugg, 1990; Van Petten & Kutas, 1990).

Semantic richness was simulated by varying the number of semantic fea-

tures linked to each word (9 vs 18 features). Mirroring the empirical findings

(e.g., Holcomb et al., 1999; Kounios & Holcomb, 1994; Lee & Federmeier,

2008), words with a larger number of semantic features produced larger

lexico-semantic prediction errors. This is because activating additional state

units (with the same amount of unpredicted information per unit) activated a

larger number of prediction error units, and this error activity summed to

produce a larger simulated N400.

5.1.3.2 Priming effects
Following previous studies, we simulated priming by presenting the model

with an initial “prime” input, followed by two blank iterations, and then a

“target” input. In addition to simulating the effects of repetition priming (cf.

Rugg, 1985), we were also able to simulate semantic priming (cf. Bentin

et al., 1985; Holcomb, 1988; Holcomb & Neville, 1990; Rugg, 1985)

because semantic features were sometimes shared between words (e.g.,

the semantic feature,<is-plant> is shared by the lexical items, lime and corn).

As expected, primed target words elicited smaller lexico-semantic prediction
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errors than unprimed targets. This is because, when processing the prime,

the model’s state units settled on a set of semantic features, which

“lingered” in the intervening period between the prime and target. If the

semantic features of the target either partially (semantic priming) or fully

(repetition priming) overlapped with the prime, this overlap allowed the

model to settle more quickly and to suppress the prediction error produced

at the level below.

5.1.3.3 Top-down contextual effect simulations
We were also interested in the effects of broader context on the N400. To

this end, we simulated predictive pre-activation by clamping the highest

dummy event layer to a desired cloze probability distributiong. During this

pre-activation phase, this layer produced semantic predictions, which

induced a top-down bias in the model’s semantic state units. Newly acti-

vated semantic states then led to the pre-activation of lexical state units,

and so on down the network. When pre-activation was complete, the

model’s state units at each level were aligned with the probability distribu-

tion of the state units at the dummy event layer, at which point we presented

the model with expected or unexpected orthographic inputs.

To simulate the graded effects of cloze (DeLong et al., 2005; Kutas &

Hillyard, 1984; Morgan, Brothers, & Kuperberg, n.d.; Wlotko &

Federmeier, 2012), we presented each of the 512 critical words at four

levels of probability: 99%, 50%, 25% and uniform (1/[total words]¼
1/1579¼0.06%). As expected, there was a graded, inverse relationship

between word probability and the magnitude of lexico-semantic prediction

error. Critically, similar to the sentence-level models implemented by

RHM18 and Fitz and Chang (2019), prediction errors were only sensitive

to the cloze probability of the input, and not to the constraint of the prior

context (cf. Federmeier et al., 2007; Kuperberg et al., 2020; Kutas &

Hillyard, 1984). In other words, unexpected words generated the same sim-

ulated N400 response when they violated a strong prior prediction (99%

constraint) as when no particular word was highly predictable (uniform

pre-activation).

Similar to RHM18, we also showed that the simulated N400 was sen-

sitive to the degree of semantic overlap between an expected input and an

g As described earlier, each state unit in this layer represented a word in the model’s lexicon. Therefore,

an activity pattern over units in this layer approximated a probability distribution over words.
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otherwise low-probability target word. Moreover, we further extended this

simulation by showing that the semantic overlap effect was larger in sentence

contexts that were more vs less constraining, again mirroring the empirical

findings (Federmeier & Kutas, 1999).

Another novel contribution of our approach was the simulation of

orthographic overlap effects during sentence comprehension (DeLong

et al., 2019; Ito, Corley, et al., 2016; Laszlo & Federmeier, 2009). When

one word was highly predictable (wish), violations that were orthographi-

cally related to this expected completion produced less lexico-semantic pre-

diction error than unrelated inputs (F-R-O-G), regardless of whether the

violating input was a word (D-I-S-H) or a pseudoword (W-U-S-H;

cf. Laszlo & Federmeier, 2009). Taken together, these effects of contextual

predictability and overlap suggest that the magnitude of lexico-semantic

prediction error is directly linked to the amount of new, unpredicted infor-

mation carried by the bottom-up input, regardless of whether this informa-

tion is orthographic, lexical, or semantic.

5.1.3.4 Interactions between bottom-up lexical variables and top-down
context

In addition to these main effects, our simulations also captured interactions

between lexical and contextual factors. Similar to Cheyette and Plaut (2017)

and Rabovsky and McRae (2014), we showed that repetition priming

was modulated by both frequency (cf. Rugg, 1990) and semantic richness

(cf. Kounios &Holcomb, 1994).We further extended these findings by suc-

cessfully simulating the reduced effects of frequency and semantic richness

on high cloze (vs low cloze) continuations, again mirroring the empirical

findings (Cloze�Frequency: Dambacher, Kliegl, Hofmann, & Jacobs,

2006; Cloze�Richness: Holcomb et al., 1999). In the case of word fre-

quency, differences in feedback weights imposed an implicit prior on the

model that reduced the lexico-semantic prediction error produced by more

frequent words. However, repetition and cloze probability were able to

override this prior, such that high and low frequency words produced

equally small lexico-semantic prediction errors. In the case of semantic rich-

ness, words with a greater number of semantic features carried additional

unpredicted semantic information, but, again, this difference was eliminated

when these words were repeated or strongly pre-activated by prior

top-down predictions.
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5.1.4 Insights & limitations
Our model demonstrated, for the first time, that the basic principles of pre-

dictive coding—a general computational theory of brain function—can suc-

cessfully explain key properties of the N400 response, an important neural

signature of language comprehension. As noted above, we used a predictive

coding algorithm and architecture that was originally developed to explain

low-level phenomena in the visual system (Spratling, 2012, 2013, 2014,

2016). The fact that the same algorithm and architecture was able to simulate

effects on the N400 suggests that the same computational principles that are

employed in other perceptual and cognitive domains may also support

language processing. We now consider the insights and limitations of

our model in relation to the four major constraints that we discussed

in Section 4.

5.1.4.1 Explaining a wide range of empirical phenomena
We first argued that any successful model of the N400 should be able to sim-

ulate a wide range of empirical findings, using a single outcome measure,

with few additional assumptions. In this regard, our model did impressively

well. The structure of our model was largely prescribed by the principles of

predictive coding, both in terms of the precise connectivity between units,

and the stages of the algorithm itself. In this sense, our model was relatively

constrained. Yet even with these constraints, the model was able to simulate

a broad set of N400 effects.

Like the word-level models reviewed in Section 2, the model was able to

explain how the lexical characteristics of words presented in isolation

(semantic richness, lexical frequency, orthographic neighborhood) can

influence the N400, and why the amplitude of this component is reduced

when words are presented after a repeated or semantically related prime.

Moreover, even though the model included explicit lexical representations,

the presence of an orthographic layer allowed us to simulate the processing

of non-word stimuli: Like Laszlo and Plaut (2012), we observed effects of

orthographic neighborhood size on both word and pseudoword strings.

Moreover, unlike previous models, our Predictive Coding model was able

to accurately simulate the larger N400 response to pseudowords, relative to

real words, even when controlling for orthographic neighborhood size

(cf. Holcomb et al., 2002; Meade et al., 2019, 2018; but see Laszlo &

Federmeier, 2011). This is because, in contrast to Laszlo and Plaut

(2012), the model was not trained to reduce semantic activation in response

to non-words; instead, the pseudowords were free to spread activation to
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the semantic representations of their orthographic neighbors, producing a

larger error overall.

In addition to these single word effects, the model was able to simulate

several sentence-level effects, including the graded effect of contextual pre-

dictability on the N400 (similar to RHM18 and Fitz & Chang, 2019).

Importantly, the model went beyond RHM18 by not only simulating the

effects of semantic prediction overlap (cf. Federmeier & Kutas, 1999;

Kutas & Hillyard, 1984), but also the effects of orthographic prediction overlap

on the N400 evoked by both words and pseudoword strings during sentence

comprehension (see Laszlo & Federmeier, 2009). Taken together, these

findings all point to a comprehension system in which the amplitude of

the N400 reflects the amount of latent lexico-semantic information encoded

in the bottom-up input that has not already been predicted by the system as

a whole.

Perhaps the most important success of this computational framework,

however, is that it is the first to capture both word-level and sentence-level

manipulations—as well as their interactions—using a single dependent

measure: lexico-semantic prediction error. A key reason for this model’s

success is its hierarchical and interactive architecture, which we turn to next.

5.1.4.2 Incorporation of interactive, hierarchically organized representations
As discussed, a central precept in cognitive and neurobiological models of

language processing is the continuous interaction between higher and lower

levels of representation. This type of continuous interaction across levels of

representation is an inherent component of hierarchical predictive coding

(Friston, 2005; Mumford, 1992; Rao & Ballard, 1999). In our Predictive

Coding model, each level of representation interacted continuously with

the levels above and below, through both top-down and bottom-up connec-

tions. More specifically, the top-down effects took two forms: First, higher

layers continually generated top-down predictions (or reconstructions) of

states at the level below, which were used by error units to compute predic-

tion error. This prediction error provides the bottom-up input to the layer

above, where it is used to update state representations, allowing the model

to incrementally converge on the correct interpretation. Second, higher layers

provided a top-down bias that could activate and “fill-in” state representations

at the level below, making the system robust to perceptual noise or ambiguous

inputs (see Mumford, 1992 for discussion). Unlike previous models of the

N400, the combination of top-down and bottom-up flow of information
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across hierarchical levels allowed for direct interactions between low-level lex-

ical factors (such as orthographic neighborhood size) and higher-level contex-

tual variables (cloze probability).

As we also discussed, central to many predictive processing models of

language comprehension is the idea that the brain can exploit the implicit

predictions of event representations, encoded at longer time scales at higher

levels of the processing hierarchy. The assumption is that these anticipatory

states generate top-down predictions that pre-activate lexico-semantic repre-

sentations before new bottom-up inputs are encoded at this level (DeLong

et al., 2005; Kuperberg & Jaeger, 2016; Wang, Kuperberg, et al.,

2018). In our Predictive Coding model, we simulated these temporal and

hierarchical top-down predictions by pre-activating state units at the top

layer of our model and allowing these predictions to filter down to

lower-level state units, prior to presenting the model with a bottom-up

orthographic input.

One limitation of this current implementation is that we provided this

top-down pre-activation to the model through a “dummy” event layer.

In reality, we believe the source of this top-down input would correspond

to an event state that is incrementally inferred from a preceding sentence

context. In order to implement this, the highest level of the model would

need to encode event representations over a longer time span than individual

words (analogous to the event-level representations implemented in the

models by Brouwer et al., 2017 and RHM18). Note that a lower-level

analogue of this situation already exists in our model: If we present one letter

at a time to our model, the remaining letters can be pre-activated because

lexical units are connected to “future” letter positions that have not yet

been encountered. In general, this approach is somewhat analogous to

how the speech recognition model TRACE (McClelland & Elman,

1986) includes word units that span longer durations than phoneme units.

Therefore, in future versions of this Predictive Coding model, it will be

important to incorporate explicit event representations that are built up

incrementally over the course of a sentence.

5.1.4.3 Cognitive plausibility: Facilitatory effect of context on facilitation during
language comprehension within N400 time window

Predictive coding also captures the central idea, common to all cognitive

theories of the N400, that the attenuation of this component by prior con-

text is closely linked to facilitated processing. In our model, regardless of

whether inputs were repeated, semantically primed, or higher cloze, they

186 Samer Nour Eddine et al.



produced a smaller lexico-semantic prediction error (i.e., a smaller simulated

N400). Critically, however, in all these cases, despite producing less neural

activity within error units, the lexico-semantic state units were able to con-

verge more quickly on the correct interpretation of the bottom-up input.

In other words, despite the reduction in the N400 (driven by the reduction

in activity within the error units), the semantic features of the expected

words would still be easier to access as the model convergedh. This stands

in contrast to Semantic Activation models, where an activity-dependent

decay function resulted in more difficult semantic retrieval following a related

prime (Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014). Our approach

was also distinct from previous prediction error accounts, where errors were

computed outside the model (Rabovsky & McRae, 2014), or even outside

the comprehension system itself (Fitz & Chang, 2019) at a stage when word

processing was already complete.

The link between reduced N400 responses and facilitated processing was

also captured by RHM18’s Sentence Gestalt model in which predictable

inputs triggered a smaller shift in an internal event representation.

However, as discussed earlier, this model was unable to explain the neuroan-

atomical sources of the N400 effect. Predictive coding can account for these

source-localization data. This is because it attributes the evoked effect of prim-

ing and contextual predictability in plausible sentences to differences in the

magnitude of prediction error produced by error units at the lexico-semantic

level. As such, it correctly predicts that semantic priming effects, and, in

plausible sentences, predictability effects on the N400 should all localize to

regions that support lexico-semantic processing within the left temporal lobe

(semantic priming effects: Halgren et al., 2006; Lau et al., 2016; Nobre &

McCarthy, 1995; predictability effects in plausible sentences: Wang et al., 2021).

h The process of converging on a specific expected state representation is sometimes referred to as rep-

resentational “sharpening.” Sharpening is a feature of several other classic computational theories of

brain function, such as interactive activation architectures (e.g., McClelland & Rumelhart, 1981),

adaptive resonance theory (Carpenter & Grossberg, 1987) and biased competition models of

top-down attention (Desimone & Duncan, 1995; see also Harpur & Prager, 1994). Early discussions

of predictive coding assumed that a reduction of prediction error to expected inputs was incompatible

with a sharpening of neural activity to expected inputs (e.g., Murray, Schrater, & Kersten, 2004).

However, others pointed out that, because of the functional distinction between “error units” (that

compute prediction error at each level of cortical representation) and “state units” (that infer the under-

lying representation of the input at each level of cortical representation), post-stimulus sharpening is

fully compatible with predictive coding (Friston, 2005; Kok & de Lange, 2015; Spratling, 2008;Walsh,

McGovern, Clark, & O’Connell, 2020). In other words, expected bottom-up input reduces the mag-

nitude of the prediction error computed by error units, while simultaneously increasing activity pro-

duced within state units that encode the expected representation.
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Moreover, predictive coding can also explain why implausiblewords addition-

ally produce a larger evoked response within left inferior cortex within the

N400 time-window (e.g., Halgren et al., 2002; Ihara et al., 2007; Maess

et al., 2006; Marinkovic et al., 2003; Pylkk€anen & McElree, 2007; Wang

et al., 2021). According to this framework, higher-level prediction error at

the event level is only produced by inputs whose statistics strongly deviate from

the statistics of natural environmental inputs (see Rao & Ballard, 1999), i.e.,

when top-down predictions based on stored real-world knowledge fail to sup-

press event-level prediction error produced within left inferior frontal cortex.

5.1.4.4 Biological plausibility: An explicit and biologically plausible linking
function

We also emphasized that a comprehensive model of the N400 should pro-

vide an explanation for why its particular linking function would give rise to

neural activity at the scalp’s surface. In the case of predictive coding, the

linking function is clear: prediction errors are computed as an inherent com-

ponent of semantic inference; that is, when inputs are unexpected, this leads

to increased activity in error units, and therefore increased post-synaptic

potentials, leading to a larger N400.

Moreover, like previous Semantic Activation accounts (LPAC), our

Predictive Coding model was able to simulate the characteristic rise-and-fall

trajectory of theN400. As pointed out by Friston (2005), the basicmorphology

of event-related potentials is intuitively explained by the activation dynamics of

the predictive coding algorithm. First, prediction errors rise as new inputs are

presented to the system that cannot be explained by predictions/reconstruc-

tions at the level above. Then, gradually, these errors begin to fall as higher level

regions update their representations to generate more accurate reconstructions,

thereby suppressing lower-level prediction errors. In our model, this updating

process always required a relatively fixed number of iterations, which may

explain the relatively constant latency of the N400 response.

At a more general level, there is a growing body of evidence that the com-

putations performed in predictive coding can, in principle, be implemented at

the level of cortical microcircuits (see Bastos et al., 2012; Shipp, 2016).

Moreover, studies using single cell recordings (Bell, Summerfield, Morin,

Malecek, & Ungerleider, 2016; Fiser et al., 2016) and fMRI (de Gardelle,

Stokes, Johnen, Wyart, & Summerfield, 2013; de Gardelle, Waszczuk,

Egner, & Summerfield, 2013) provide evidence for functionally distinct

populations of state and error units. Indeed, consistent with the theory that

distinct lexico-semantic error and state units are differentially activated by
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expected and unexpected inputs during sentence comprehension, in a recent

MEG study, we were able to detect spatially distinct patterns of neural activity

within the left temporal lobe to expected and unexpected words between

300–500ms (L. Wang, S. Nour Eddine, T. Brothers, O. Jensen &

G. Kuperberg, In Preparation).

A limitation of our current Predictive Coding implementation is that it

did not include a learning procedure. Instead, we provided the model with a

fixed set of connection weights. Therefore, unlike the models implemented

by RHM18 and Fitz and Chang (2019), we were unable to simulate the

interaction between predictability and longer-term repetition effects on the

N400 (Besson et al., 1992; Rommers & Federmeier, 2018). It is important

to note, however, that this is not an inherent limitation of predictive coding

more generally. In principle, the prediction error computed during predic-

tive coding can function not only to perform perceptual inference, but also to

gradually update connection weights for longer-term learning (see Rao &

Ballard, 1999). Under such circumstances, error units would function to

minimize prediction errors both in the short-term (through inference) and

in the longer term (by updating the model’s weights).

Indeed, under certain conditions, the prediction errors computed during

predictive coding can be shown to converge to the learning signal that is back-

propagated in connectionist networks (Millidge, Tschantz, & Buckley, 2020;

Song, Lukasiewicz, Xu, & Bogacz, 2020; Whittington & Bogacz, 2017).

However, unlike backpropagation, where updates require information from

all downstream neurons, weight updates in predictive coding rely exclusively

on locally generated error. Therefore, predictive coding approaches may pro-

vide a biologically plausible alternative to backpropagation. Incorporating

long-term learning will be an important goal for future iterations of our

Predictive Coding model, serving to highlight the important links between

prediction error and learning, not just during language production (as

highlighted by Fitz & Chang, 2019), but also during language comprehension

(e.g., Elman, 1990; Fine & Jaeger, 2016; Fine, Jaeger, Farmer, & Qian, 2013;

Kleinschmidt & Jaeger, 2015; Myslin & Levy, 2016).

6. Future directions

In this review, we have discussed several computational models that

have deepened our understanding of the N400. Over time, these models

have shifted from exploring lower-level lexical phenomena and simple

priming effects, to the effects of higher-level context on the N400 produced
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during sentence comprehension. Each of these models provided unique

insights, which often built upon each other over time. For example, our

recent Predictive Coding model (Section 5) incorporates many aspects of

prior approaches, including: (a) a biologically plausible linking function

(Laszlo & Plaut, 2012), (b) a central role for prediction error in generating

the N400 response (Fitz & Chang, 2019; Rabovsky & McRae, 2014), (c) a

hierarchical structure that separates lexico-semantic and higher-level event

states (Brouwer et al., 2017), and, (d) the core assumption that words func-

tion as “cues to meaning” that induce shifts in the model’s internal state

(RHM18). Despite this progress, there is obviously much work to be done.

In this final section, we discuss some further challenges for existing models,

while recommending additional directions for future research.

In addition to the large literature documenting the effects of lexical and

contextual factors on the N400, there is also an extensive behavioral literature

that documents the effects of these factors on the speed and accuracy of word

identification (see Rayner, 1998; Rastle, 2016 for reviews). Therefore, a

critical challenge for future models will be to simulate the effects of these

factors on both theN400 and behavior, withminimal additional assumptions.

We believe that one promising approach for simulating the effects of

context on behavior is to adopt an evidence accumulation/sequential sam-

pling framework (cf. Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff,

1978; Usher &McClelland, 2001). In this framework, lexico-semantic units

associated with different words can accumulate activation over time, trigger-

ing behavioral responses through a boundary-crossing decision criterioni.

This evidence accumulation approach has been successfully used to model

the effects of context on cloze response times through a race model (Staub,

Grant, Astheimer, & Cohen, 2015), and has also been used to model the

effects of context on eye movement decisions during reading (Bicknell &

Levy, 2010). Importantly, this approach is biologically plausible: There is

strong evidence from primate neurophysiology that neurons can accumulate

evidence that guides behavioral responses (see Gold & Shadlen, 2007 for a

review). Although at the time of writing we have not yet attempted to

i We note that Cheyette and Plaut (2017) attempted to simulate certain effects on both the N400 and

behavior (lexical decision). However, although the semantic units accumulated activation, the lexical

decision output itself was not based on whether or not this accumulated value passed a threshold.

Instead, what determined this behavioral response was a non-linear combination of the instantaneous

(decayed) and accumulated (undecayed) activation. As discussed in Section 2, this approach raises sev-

eral concerns. We also note that, in their original model, Laszlo and Plaut (2012) did simulate lexical

decision based on a threshold-crossing criterion (consistent with neurally plausible decision-making).

However, there was no attempt to simulate the effects of lexical variables on lexical decision times.
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simulate the behavioral effects of context, we believe that our Predictive

Coding model offers a particularly promising framework for simulating con-

textual effects on both the N400 and behavior. Specifically, while the rise and

fall of lexical and semantic error activity (prediction error) can explain the rise

and fall of the N400, lexical and semantic state units accumulate information

about the identity of a specific input. Thus, a simple activation threshold on

this accumulated state activation could provide a method for simulating

effects of context on measures such as word recognition times.

We should emphasize, however, that simulating both neural and behav-

ioral effects using the same computational model is far from trivial. Although

many contextual factors lead to both reductions in the N400 and reductions in

reaction times, other variables can influence the N400 and behavior in oppo-

site directions. For example, semantic concreteness leads to an increase in

N400 amplitude but shorter reaction times (Kounios & Holcomb, 1994).

Moreover, in addition to the influence of linguistic factors, the link between

lexico-semantic activation and behavior will also depend on several other fac-

tors, including the nature of task (e.g., lexical decision vs semantic categori-

zation) and higher-order utility functions (e.g., speed-accuracy tradeoffs).

Ultimately, future computational models may need to adopt a decision theoretic

approach in which behavioral responses are guided by a decision variable that

accumulates lexical and/or semantic evidence that is specifically relevant for

the comprehender’s current goals (cf. Gold & Shadlen, 2007).

Another important goal for future work will be to incorporate more

realistic sublexical representations into models of the N400. Currently, com-

putational models either omit sublexical representations altogether (Brouwer

et al., 2017; RHM18; Fitz & Chang, 2019), or rely on a “slot-based” coding

scheme that maps directly from orthography to semantics (Semantic

Activation models, Predictive Codingj). Although these slot-based

schemes are simple to implement, they are inconsistent with our current

knowledge of orthographic representations in the brain, and they are unable

to account for transposed-letter priming effects on behavior and the N400

(Carreiras, Vergara, & Perea, 2009; Grainger, 2008; Grainger, Kiyonaga, &

Holcomb, 2006).

Even more importantly, no current model of the N400 has yet incorpo-

rated phonological representations, which are thought to be co-activated in

j In Rabovsky andMcRae (2014), the input representations did not strictly correspond to either orthog-

raphy or phonology; the authors did not specify the relationship between the input representation and

the word it represented.
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parallel with orthographic representations, even during silent reading

(Grainger & Holcomb, 2009; Harm & Seidenberg, 2004; Seidenberg &

McClelland, 1989). Indeed, several empirical N400 phenomena can only

be explained by appealing to an “indirect pathway” that maps from orthog-

raphy to semantics via phonological representations. For example, the pho-

nological neighborhood of a visually-presented word can also modulate the

N400 (Carrasco-Ortiz, Midgley, Grainger, & Holcomb, 2017), and larger

N400 priming effects are observed on targets that are phonologically related

to pseudo-homophone primes (brane—brain) compared to orthographically

matched control primes (brans—brain; Grainger et al., 2006). Without pho-

nological representations, current models of the N400 produced during

reading are unable to account for these results.

While previous computational models of the N400 have focused on visual

word processing, spoken language comprehension arguably plays an even

more important role in day-to-day communication. Empirically, spoken

words are known to produce a robust N400 response, which is sensitive to

many of the same lexical and contextual factors discussed in this review

(e.g., Diaz & Swaab, 2007; Winsler, Midgley, Grainger, & Holcomb,

2018). However, because auditory inputs unfold sequentially, phoneme by

phoneme, studies of spoken language comprehension have also revealed addi-

tional N400 phenomena that are specific to online speech comprehension

(e.g., cohort vs rhyme overlap effects, Van Petten, Coulson, Rubin,

Plante, & Parks, 1999). These findings could serve as important benchmarks

for future computational models of spoken word comprehension.

In future computational models, it will also be important to simulate ear-

lier language-related ERP components (evoked between 150-300ms) that

are thought to support sublexical processing, including the N170 (Bentin,

Mouchetant-Rostaing, Giard, Echallier, & Pernier, 1999) and the N250

(Grainger & Holcomb, 2009; Holcomb & Grainger, 2006; Kiyonaga,

Grainger, Midgley, & Holcomb, 2007). These early negative-going ERP

components have been linked to the activation of sublexical orthographic

or phonological information in a hierarchical interactive activation frame-

work (Grainger & Holcomb, 2009). As such, hierarchical models, like pre-

dictive coding, may be particularly well-suited for simulating these early

ERP responses. For example, just as the N400 is simulated as prediction

error at the level of lexico-semantic features, the N250 could be simulated

as lower-level prediction error at the level of orthographic form.

By the same token, it will also be important to extend future computa-

tional models to simulate ERP components beyond the N400 time-window.
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Two previous computational models (Brouwer et al., 2017; Fitz & Chang,

2019) have attempted to model the P600—a late posteriorly-distributed pos-

itivity observed between 600–1000ms following the onset of syntactic

(Hagoort et al., 1993; Osterhout & Holcomb, 1992, 1993) and semantic

(Kuperberg, 2007) violations. However, both these modeling approaches

had limitations. In Brouwer et al’s Retrieval-Integration model, the P600

was simulated as a shift in state at the higher event level, which is nearly iden-

tical to the proposed linking function for the N400 in RHM’s Sentence

Gestalt model. Because of this assumed linking function for the P600, the

Retrieval-Integrationmodel is unable to explain why linguistic anomalies that

are relatively uninformative at the event-level (and that do not produce a large

N400) can still produce robust P600 responses (e.g., agreement errors). In

Fitz & Chang’s Error Propagation model, although the P600 construct was

able to capture both syntactic and semantic anomalies, this component was

always dependent on a preceding N400 response. Specifically, because it

was defined as the backpropagated error signal, it was impossible for the

P600 construct to take on a large value if the N400 (reflecting the total abso-

lute error) was minimal. This assumption prevented the model from being

able to correctly simulate the effects of factors that produce a large P600 effect

but minimal differences on the N400 (e.g., the effects of semantic reversal

anomalies).

Ultimately, we believe that any computational model of the P600 must

incorporate the sensitivity of this component to multiple types of linguistic

errors, as well as the fact that this component is enhanced when

comprehenders are engaged in deep comprehension; that is, they have

established a prior “situation model” (for recent discussion, see Brothers,

Wlotko, Warnke, & Kuperberg, 2020). We have suggested that the poste-

rior P600 is evoked when comprehenders are initially unable to integrate a

word into their prior situation model, resulting in a reallocation of attention

and reprocessing of the input ((Alexander, Brothers, & Kuperberg, n.d.);

Brothers et al., 2020; Kuperberg et al., 2020). In a predictive coding frame-

work, this late-stage reprocessing could occur when the model fails to con-

verge, resulting in the continued generation of inaccurate top-down

predictions, which fail to switch off prediction error produced at lower

levels of linguistic representation (Wang et al., 2021).

In addition, it will be important for future models to distinguish between

the posteriorly distributed P600 effect, which is produced by highly implau-

sible or anomalous inputs, and a distinct late frontally-distributed positivity

that is triggered by unexpected but plausible inputs (Federmeier et al., 2007;
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Van Petten & Luka, 2012). In recent studies, we have argued that this late

frontal positivity component is produced when readers are able to successfully

update or revise their prior situation model in response to new, unexpected

information (Brothers et al., 2020; Kuperberg et al., 2020). In a predictive

coding framework, this late-stage activity could be driven by the generation

of new top-down predictions that are passed down the hierarchy, updating

event-level representations and activating lexico-semantic information, in

order to facilitate the processing of new upcoming inputs (Wang et al., 2021).

Finally, while previous computational models have focused on N400

effects in young, healthy monolingual readers, these models could also pro-

vide important insights into how the N400 is modulated in different

populations. For example, one exciting avenue of research will be to

develop N400 models of bilingual language processing. A central question

in this field is how the bilingual lexicon is organized, and whether

cross-linguistic representations are activated automatically during online

comprehension. For example, in bilingual studies of sentence processing,

a sudden switch between languages results in an increase in the N400, which

has been taken as evidence for top-down suppression of the non-target lan-

guage (Moreno, Federmeier, & Kutas, 2002). However, other ERP studies

have shown a surprising degree of permeability (non-selectivity) across lan-

guages. For example, English words produce a larger N400 when they have

more orthographic neighbors in a bilingual’s second language (e.g., French:

Midgley, Holcomb, VanHeuven, & Grainger, 2008). In addition, bilingual

readers showN400 facilitation when they process cognatewords that have the

same form and meaning across languages (relative to frequency-matched

controls; Midgley, Holcomb, & Grainger, 2011; Peeters, Dijkstra, &

Grainger, 2013). Accounting for these results within a single model of

the N400 will be an important direction for future research.

Similarly, computational models of the N400 can also play an important

role in informing our understanding of different clinical disorders character-

ized by language processing disturbances. In previous work, researchers have

applied artificial “lesions” to simple connectionist models of word reading in

order to account for the specific pattern of behavioral deficits in certain lan-

guage disorders (e.g., Dell, Schwartz, Martin, Saffran, & Gagnon, 1996;

Plaut & Shallice, 1993a, 1993b). A similar approach could be taken to

explain abnormalities in theN400 across different language disorders includ-

ing aphasia (Swaab, Brown, & Hagoort, 1997), dementia (Iragui, Kutas, &

Salmon, 1996), and dyslexia (Russeler, Becker, Johannes, & Munte, 2007).

In addition, both autism and schizophrenia are characterized by disturbances
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in language processing (American Psychiatric Association, 2013), and

researchers have theorized that deficits in predictive coding may play a cen-

tral role in both these disorders (autism: van Boxtel & Lu, 2013; Van de

Cruys et al., 2014; schizophrenia: Corlett, Taylor, Wang, Fletcher, &

Krystal, 2010; Griffin & Fletcher, 2017; Sterzer et al., 2018; see also

Brown & Kuperberg, 2015). Future computational models can explore

whether these language processing deficits are directly linked to abnormal-

ities in predictive coding mechanisms.

In conclusion, modeling ERP components like the N400 offers a unique

opportunity to bridge across the algorithmic and implementational levels of

analysis (cf. Marr, 1982). In this review, we have described the strengths and

limitations of different computational theories, highlighting the unique

insights that eachmodeling framework has contributed to our understanding

of language comprehension and the N400. More generally, this body of

work demonstrates how basic neurophysiological principles can inform

our cognitive theories, as well as how empirical phenomena in the neural

and behavioral literatures can constrain our theories about cortical organi-

zation. Given the clear progress the field has made over the past decade,

we predict that future iterations of these computational models will provide

an even more precise understanding of semantic processing in the

human brain.
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