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ABSTRACT
We consider several key aspects of prediction in language comprehension: its computational
nature, the representational level(s) at which we predict, whether we use higher-level
representations to predictively pre-activate lower level representations, and whether we
“commit” in any way to our predictions, beyond pre-activation. We argue that the bulk of
behavioural and neural evidence suggests that we predict probabilistically and at multiple levels
and grains of representation. We also argue that we can, in principle, use higher-level inferences
to predictively pre-activate information at multiple lower representational levels. We suggest that
the degree and level of predictive pre-activation might be a function of its expected utility,
which, in turn, may depend on comprehenders’ goals and their estimates of the relative
reliability of their prior knowledge and the bottom-up input. Finally, we argue that all these
properties of language understanding can be naturally explained and productively explored
within a multi-representational hierarchical actively generative architecture whose goal is to infer
the message intended by the producer, and in which predictions play a crucial role in explaining
the bottom-up input.
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Language comprehension is predictive. To some, this is a
controversial statement. However, under some interpret-
ations, this is something that the field has known for
several decades. To consider a well-known and broadly
accepted piece of evidence, consider the phenomenon
of garden-pathing during sentence comprehension. In
sentences like (1a), the comprehender encounters a tem-
porarily ambiguous sequence of words – a context. Upon
encountering new bottom-up input (e.g. “conducted”…
in (1b)), this ambiguity is resolved to the a priori less
frequent syntactic interpretation (or parse), leading to
processing difficulty. This increase in processing difficulty
is known as the garden path effect, and it manifests
both as relatively slower per-word reading times (Fer-
reira & Clifton, 1986; Garnsey, Pearlmutter, Myers, &
Lotocky, 1997; MacDonald, Just, & Carpenter, 1992;
Spivey-Knowlton, Trueswell, & Tanenhaus, 1993) and
poorer comprehension accuracy (Ferreira, Christianson,
& Hollingworth, 2001; Ferreira & Patson, 2007). If,
however, the comprehender had encountered another
context such as (1c), which avoided the temporary
ambiguity, she would not have experienced a garden
path effect. Importantly, as we will discuss further in

the next section, the magnitude of the garden path
effect is graded and highly dependent on the predict-
ability of the intended parse given the preceding
context.
(1a) The experienced soldiers warned about the dangers

…
(1b) … conducted the midnight raid.
(1c) The experienced soldiers who were warned about

the dangers…
Similar effects of contextual predictability are known

to influence lexico-semantic processing. Reaction times
are faster to predictable versus unpredictable words in
a variety of behavioural tasks, ranging from lexical or
phrasal decision (Arnon & Snider, 2010; Fischler &
Bloom, 1979; Forster, 1981; Schwanenflugel & Lacount,
1988; Schwanenflugel & Shoben, 1985; Stanovich &
West, 1983), naming (Forster, 1981; McClelland &
O’Regan, 1981; Stanovich & West, 1979, 1981, 1983;
Traxler & Foss, 2000), gating (Grosjean, 1980), and
speech monitoring (Cole & Perfetti, 1980; Marslen-
Wilson, Brown, & Tyler, 1988). Moreover, eye-tracking
studies show that readers fixate less on predictable
than unpredictable words (Balota, Pollatsek, & Rayner,
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1985; Ehrlich & Rayner, 1981; Rayner, Binder, Ashby, &
Pollatsek, 2001; Rayner & Well, 1996; see also Boston,
Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & Keller,
2008; Demberg, Keller, & Koller, 2013; Frank & Bod,
2011; McDonald & Shillcock, 2003; Smith & Levy, 2013;
see Staub, 2015 for a recent review). And, as early as
1980, Kutas and Hillyard reported evidence for a
reduced neural signal – the N400 event-related potential
(ERP) – to semantically predictable versus unpredictable
words in sentence contexts (Kutas & Hillyard, 1980; see
also DeLong, Urbach, & Kutas, 2005; Kutas & Federmeier,
2011; Kutas & Hillyard, 1984).

The simple point we wish to make at this stage is that
it is logically impossible to explain these effects without
assuming that the context influences the state of the
language processing system before the bottom-up
input is observed. This is the minimal sense in which
language comprehension must be predictive. And,
indeed, as we will discuss in Section 1, almost all
models of syntactic parsing and lexico-semantic proces-
sing posit that the comprehender has anticipated some
structure or some semantic information prior to encoun-
tering new bottom-up information.

Given this logic, the role of prediction in language
processing should not be so controversial. Yet, debates
about its contributions have been central to psycholin-
guistic theory for decades, with researchers taking
strong positions on both sides. Some, for example,
have argued that, given the large number of possible
continuations of any given context, predicting such
information ahead of time would be an unnecessary
waste of processing resources (e.g. Forster, 1981; see
Van Petten & Luka, 2012 for discussion). Others have
argued that, given the noisiness, ambiguity and speed
of our linguistic input, prediction is the most efficient sol-
ution for fast, efficient, and accurate comprehension (e.g.
Kleinschmidt & Jaeger, 2015).

These debates can be quite nuanced, with researchers
focusing on different aspects of prediction. Some have
distinguished expectation or anticipation from prediction
(e.g. Van Petten & Luka, 2012); some have distinguished
predictive pre-activation from predictive commitment (e.g.
Lau, Holcomb, & Kuperberg, 2013). Finally, within the
computational psycholinguistics literature, the term pre-
diction has been used in yet other ways, in relation to a
growing number of probabilistic models of language
processing (e.g. Bejjanki, Clayards, Knill, & Aslin, 2011;
Demberg et al., 2013; Feldman, Griffiths, & Morgan,
2009; Hale, 2011; Jurafsky, 1996; Keller, 2003; Kleinsch-
midt & Jaeger, 2015; Norris & McQueen, 2008; Smith &
Levy, 2013).

The end result is that prediction has come to mean
quite different things to different people. Indeed, our

review of the literature led us to the conclusion that
different subfields and different researchers have criti-
cally different conceptions of what it means to predict
during language comprehension. This has led to much
confusion with researchers sometimes arguing at cross-
purposes. The term prediction has become so loaded
that some are hesitant to use it at all, while others
seem to underestimate (Huettig & Mani, 2015) or even
reject its role in language processing, despite growing
evidence that in real-world communicative situations,
the use of prediction to comprehend language is the
norm. It has long been noted that, during natural conver-
sation, we often seem to know when to take our turn,
with virtually no gap or overlap between exchanges
(Sacks, Schegloff, & Jefferson, 1974; Stivers et al., 2009).
There is now compelling evidence that these fast
exchanges arise because listeners are able to predict
when a speaker’s conversational turn is about to end,
and that such predictions are based on the lexical and
syntactic content of what they have just heard
(Magyari & de Ruiter, 2012; de Ruiter, Mitterer, &
Enfield, 2006; see Garrod & Pickering, 2015 for recent
discussion).

This review aims to help clarify some sources of con-
fusion around the role of prediction in language
comprehension. Our first goal is to lay out several
orthogonal senses in which term prediction has been
used in the psycholinguistic and cognitive neuroscience
literatures, surveying the main debates and pointing to
some relevant papers (although, because of space limit-
ations, we do not aim to comprehensively review these
literatures). Our second goal is to describe, in qualitative
terms, how some of the different psycholinguistic views
of prediction can be understood within a probabilistic
(Bayesian) computational framework. We are not com-
mitted to the idea that language processing is strictly
Bayesian. Indeed, many of the ideas that we discuss
could be instantiated in many different ways at Marr’s
(1982) algorithmic and implementational levels of analy-
sis. However, we find this framework helpful in articulat-
ing, at Marr’s computational level, some potential links
between psycholinguistic constructs that have been
used to understand different aspects of prediction, and
this growing computational literature. Our third aim is
to summarise some of these insights by sketching out
a multi-representational hierarchical actively generative
architecture of language comprehension that can poten-
tially explain and link several of the phenomena we
discuss.

In Section 1, we consider what is meant by prediction
in the minimal sense of the word, asking whether it is an
all-or-nothing phenomenon, a graded phenomenon in
which one upcoming possibility is considered at a time,
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or a parallel graded phenomenon in which multiple
upcoming possibilities are considered in parallel. In
Section 2, we survey a large body of work suggesting
that, at any given time, we can use multiple different
types of information in a context to facilitate the
processing of new inputs at multiple other levels of rep-
resentation, ranging from syntactic, semantic, to phono-
logical, orthographic and perceptual. In Section 3, we
address the debates about whether such facilitation
actually reflects the use of higher-level information that
we have extracted from the context to predictively pre-
activate information at lower levels of representation,
before new bottom-up information becomes available
to these lower levels. In Section 4, we consider the
debates about whether we go beyond pre-activation
by pre-updating information at higher levels of represen-
tation, incurring additional processing consequences
when this pre-updated information is violated by new
bottom-up input. Finally, in Section 5, we summarise
the main computational insights gleaned from each
section, and we return to the role of prediction in relation
to the multi-representational hierarchical actively gen-
erative architecture of comprehension that we propose.

1. The probabilistic nature of contextual
prediction

1.1. The data and the debates

As noted above, the minimal sense in which the term
prediction has been used is to simply imply that
context changes the state of the language processing
system before new input becomes available, thereby
facilitating processing of this new input. Throughout
this review, we will broadly refer to the internal state
that the comprehender has inferred from the context,
just ahead of encountering a new bottom-up input, as
the internal representation of context. We postpone the
question of whether the comprehender can use high-
level information within her internal representation of
context to predictively pre-activate upcoming infor-
mation at lower level(s) of representation until Section
3. Rather, at this stage, we focus on the nature of predic-
tion itself and discuss the ways in which it has been con-
ceptualised in the literature.

Some older views of prediction conceptualised it as a
deterministic, all-or-nothing phenomenon. For example,
the original explanations of the garden path phenom-
enon held that the parser predicted just one possible
structure of the sentence – usually the “simplest” struc-
ture (which, interestingly, was often the most frequent
and therefore the most likely structure, see Ferreira
& Clifton, 1986; Frazier, 1978; with aspects of this

idea going back to Bever, 1970). If the bottom-up
input disconfirmed this predicted structure, the parser
needed to back off and fully reanalyse the context in
order to come up with the correct interpretation.
Similar all-or-nothing assumptions were implicit in early
views of lexico-semantic prediction, where prediction
also entailed additional assumptions such as necessarily
being strategic and attention-demanding (Becker, 1980,
1985; Forster, 1981; Neely, Keefe, & Ross, 1989; Posner
& Snyder, 1975; see Kutas, DeLong, & Smith, 2011 for
discussion), and they provided plenty of ammunition
for arguments against prediction playing any major
role in language comprehension: given the huge
number of possible continuations of any given context,
it seemed, why bother predicting just one candidate,
only to be proved wrong? (see Jackendoff, 2002; Van
Petten & Luka, 2012 for discussion).

More recent accounts view prediction as a graded
and probabilistic phenomenon. This view is based
on strong evidence of graded effects of context on
processing. For example, the magnitude of the garden
path effect depends on how much a particular verb
(Garnsey et al., 1997; Hare, Tanenhaus, & McRae, 2007;
Trueswell, Tanenhaus, & Kello, 1993; Wilson & Garnsey,
2009), thematic structure (MacDonald, Pearlmutter, &
Seidenberg, 1994; Trueswell, Tanenhaus, & Garnsey,
1994) and/or wider discourse context (Spivey-Knowlton
et al., 1993) biases against the intended syntactic parse.
Similarly, it is well established that the magnitude of
the N400 effect evoked by an incoming word is inversely
correlated with that word’s probability in relation to its
preceding context, as operationalised by its cloze prob-
ability1 (e.g. DeLong et al., 2005; Wlotko & Federmeier,
2012).

Further evidence for probabilistic prediction comes
from a series of recent studies reporting a correlation
between the surprisal of words and (a) their processing
times (Hale, 2001; Levy, 2008) and (b) neural activity
associated with processing them (Frank, Otten, Galli, &
Vigliocco, 2015). Surprisal is an information theoretic
measure that indexes the new Shannon information
gained after encountering new input (MacKay, 2003;
Shannon, 1948). It is quantified as the logarithm of the
inverse of the probability of this input with respect to
its context. There is now evidence that processing diffi-
culty, as indexed by reading times, is linearly correlated
with surprisal due to more (versus less) predictable
parses (Boston et al., 2008; Demberg & Keller, 2008;
Frank & Bod, 2011; Hale, 2001; Levy, 2008; Linzen &
Jaeger, 2015) or words (Boston et al., 2008; Demberg &
Keller, 2008; Demberg et al., 2013; Frank & Bod, 2011;
McDonald & Shillcock, 2003; Smith & Levy, 2013; see
also Arnon & Snider, 2010).2 There is also recent evidence
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suggesting that surprisal correlates with the amplitude of
the N400 to words within sentences (Frank et al., 2015;
see also Rabovsky & McRae, 2014, for discussion of
relationships between surprisal and the N400 to words
outside sentence contexts).

The studies described above provide strong evidence
that prediction is graded in nature. However, there
remains some debate about whether it proceeds in a
serial or parallel fashion. This debate has been most
clearly articulated in the parsing literature. Serial
models of parsing hold that just one upcoming structure
of a sentence is predicted with a certain strength at any
particular time. If the bottom-up input mismatches this
structure, then the parser reanalyses and goes on to
the next possibility (van Gompel, Pickering, Pearson, &
Liversedge, 2005; van Gompel, Pickering, & Traxler,
2001; Traxler, Pickering, & Clifton, 1998). In contrast, par-
allel models assume that the parser computes multiple
syntactic parses in parallel, each with some degree of
probabilistic support. This does not necessarily imply
that all possible parses are searched exhaustively, but
rather that multiple sufficiently probable parses are con-
sidered in parallel (cf. Crocker & Brants, 2000; Jurafsky,
1996; Lewis, 2000; see also Levy, Bicknell, Slattery, &
Rayner, 2009; Traxler, 2014 for discussions of this issue).
If the bottom-up input is inconsistent with these pre-
dicted parses, they are then shifted or reweighted
(Crocker & Brants, 2000; Gorrell, 1987, 1989; Jurafsky,
1996; Levy, 2008; Narayanan & Jurafsky, 2002).

A similar debate has ensued in relation to semantic
prediction. Some have suggested that because cloze
probabilities are derived by averaging across participants
and trials (see note 1), they are not reflective of what an
individual comprehender predicts on any given trial.
These researchers assume that the comprehender first
predicts the word with the highest cloze probability
(the strength of the prediction being related to this prob-
ability), and if this is disconfirmed by the bottom-up
input, she turns to the word with the next highest
cloze probability (Van Petten & Luka, 2012). Others,
however, interpret the cloze profile as reflecting the
strength/probability of parallel expectations that an indi-
vidual’s brain computes on any given trial. So, for
example, if a context has a cloze profile of 55% prob-
ability for word X, 25% for word Y and 20% for word Z,
then all three possibilities are computed and represented
with degrees of belief that correspond to these probabil-
ities; if the bottom-up input turns out to be word Z, then
there is a shifting or reweighting of these relative beliefs
such that the comprehender now believes continuation
Z with nearly 100% probability (DeLong et al., 2005;
Wlotko & Federmeier, 2012; see also Staub, Grant, Asthei-
mer, & Cohen, 2015).

In practice, it can often be difficult to experimentally
distinguish between serial and parallel probabilistic pre-
diction (for discussion in relation to syntactic prediction,
see Gibson & Pearlmutter, 2000; Lewis, 2000; and in
relation to lexico-semantic prediction, see Van Petten &
Luka, 2012). However, as we discuss below, under
certain assumptions, there is a mathematical relationship
between surprisal and Bayesian belief updating, which is
consistent with the idea that we can predictively
compute multiple candidates in parallel, each with differ-
ent strengths or degrees of belief.

1.2. Computational insights

In his now highly influential work, Anderson (1990) pro-
posed a rational approach to cognition (for discussion,
see Simon, 1990). The “ideal observer” and related
models that have grown out of this work have had a tre-
mendous influence on many disciplines in the cognitive
sciences (see Chater & Manning, 2006; Clark, 2013; Grif-
fiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; Knill &
Pouget, 2004 for reviews, and see Perfors, Tenenbaum,
Griffiths, & Xu, 2011, for an excellent introductory over-
view). This is also true of language processing (e.g. Bej-
janki et al., 2011; Chater, Crocker, & Pickering, 1998;
Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Feldman
et al., 2009; Kleinschmidt & Jaeger, 2015; Levy, 2008;
Norris, 2006; Norris & McQueen, 2008; see also Crocker
& Brants, 2000; Hale, 2001; Jurafsky, 1996; Narayanan &
Jurafsky, 2002, for important antecedents of this work
in the parsing literature).

Within this framework, the way that a rational com-
prehender can maximise the probability of accurately
recognising new linguistic input is to use all her stored
probabilistic knowledge, in combination with the pre-
ceding context, to process this input. The reason for
this is that we communicate in noisy and uncertain
environments – there is always uncertainty about the
bottom-up input, and neural processing itself is noisy
(for reviews and references, see Feldman et al., 2009;
Norris, 2006; Shadlen & Newsome, 1994). However, so
long as our probabilistic knowledge closely resembles
the actual statistics of the linguistic input, then we
should be able to use this knowledge to maximise the
average probability of correct recognition (see e.g. Bick-
nell, Tanenhaus, & Jaeger, 2015; Kleinschmidt & Jaeger,
2015; Norris & McQueen, 2008, for discussion). Similar
arguments hold for the speed of processing new
inputs, although here more complex considerations
hold (for relevant discussion, see Lewis, Shvartsman, &
Singh, 2013; Smith & Levy, 2013), and, indeed, as noted
above, there is strong evidence that the speed of proces-
sing new input depends on the probability of this input.
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To illustrate the principles of how a probabilistic fra-
mework can be used to understand the incremental
process of sentence comprehension, we describe a
model of parsing by Levy (2008; see also Hale, 2003; Jur-
afsky, 1996; Linzen & Jaeger, 2015; Narayanan & Jurafsky,
2002). As in many probabilistic frameworks of cognition,
a basic assumption of this model is that, at any given
time, the agent’s knowledge is encoded by multiple
hypotheses. In this case, the parser’s probabilistic
hypotheses are about the syntactic structure of the sen-
tence. These hypotheses are each held with different
strengths or degrees and, in Bayesian terms, are known
as beliefs. Together, these beliefs can be described as a
probability distribution. The comprehender’s goal is to
infer the underlying latent or “hidden” higher-level
cause of the observed data – the underlying syntactic
structure – with as much certainty as possible. To
achieve this goal, the parser draws upon a probabilistic
grammar (in the broadest sense). Importantly, because
the input unfolds linearly, word by word, this goal must
be achieved in an incremental fashion – by updating
parsing hypotheses after encountering each incoming
word. The rational way to update probabilistic beliefs
upon receiving new information (new evidence) is by
using Bayes’ rule, which acts to shift an original prior
probability distribution to a new posterior probability
distribution. This posterior distribution then becomes
the new prior distribution for a new cycle of belief updat-
ing when the following word is encountered. In this way,
the parser “homes in on” or discovers the underlying
structure of the observed word sequences.

The process of shifting from a prior to a posterior
probability distribution on any given cycle is called
belief updating, and the degree of belief updating as
the comprehender shifts from a prior to a posterior dis-
tribution is known as Bayesian surprise (Doya, Ishii,
Pouget, & Rao, 2007), which is quantified as the Kull-
back–Leibler divergence between these two probability
distributions. Bayesian surprise is therefore one way of
computationally formalising prediction error – the differ-
ence between the comprehender’s predictions at a given
level of representation before and after encountering
new input at that level of representation.3 Unless the
parser abandons the process, this cycle of belief updat-
ing will continue until it is fairly certain of the structure
of the sentence being conveyed. Certainty is represented
by the spread or entropy of the probability distribution.
Thus, the parser may start out relatively uncertain of
the structure of the sentence (described as a relatively
flat probability distribution, with small probabilities of
belief distributed over multiple possible structures). By
the end of the sentence, however, the parser will tend
to be more certain of the structure of a sentence

(described as a more peaked probability distribution,
with high probability beliefs that over this particular
structure).

Conceptualising comprehension as an incremental
process of belief updating (and thus probabilistic infer-
ence) helps address a potential criticism that is some-
times levied against prediction – even graded forms of
prediction: the idea that it might entail costs of suppres-
sing predicted candidates that do not match the bottom-
up input. Because all beliefs/hypotheses within a prob-
ability distribution must add up to 1, increasing belief
about new bottom-up information will necessarily
entail decreasing belief over any “erroneous” predictions.
While this will entail Bayesian surprise (the shift in belief
entailed in transitioning from the prior to the posterior
distribution), so will not predicting at all (shifting from
a flat high uncertainty prior distribution to a higher cer-
tainty posterior distribution).

An important contribution of Levy (2008; see also
Levy, 2005) is that he showed that, under certain
assumptions, there is a mathematical equivalence
between Bayesian surprise and the information theoretic
construct of surprisal, which, as noted above, is corre-
lated with the processing times and neural activity to
words during sentence comprehension. Given that the
Bayesian formalisation assumes that we hold multiple
beliefs in parallel, this equivalence therefore can also
be taken to provide indirect support for parallel probabil-
istic prediction. It also helps explain some phenomena in
the ERP literature, for example, why the amplitude of the
N400 is large, not only to low probability words that
violate highly constraining/predictable sentence con-
texts, such as “plane” following context (2), but also to
low probability words that follow non-constraining con-
texts, such as “plane” following context (3) (Federmeier,
Wlotko, De Ochoa-Dewald, & Kutas, 2007),4 and indeed
to words encountered in isolation of any context (see
Kutas & Federmeier, 2011 for a comprehensive review).
In all of these cases, the probability of the incoming
word is small, and there is a large shift from a prior to
a posterior distribution (Bayesian surprise is large; see
also Rabovsky & McRae, 2014, for related discussion).
(2) The day was breezy so the boy went outside to fly a…
(3) It was an ordinary day and the boy went outside and

saw a…
Levy’s (2008) model, and other probabilistic models of

syntactic parsing, are inherently predictive because, over
each cycle of belief updating, the newly computed pos-
terior probability distribution (the new set of inferred
hypotheses) becomes the prior distribution for the next
cycle, just before new input is encountered. This new
prior probability distribution thus corresponds to prob-
abilistic predictions for a new sentence structure at the
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beginning of the next cycle. These parsing models are
also generative in the sense that an underlying syntactic
structure can be conceptualised as generating words
(Levy, 2008) or word sequences (Bicknell & Levy, 2010;
Bicknell, Levy, & Demberg, 2009; Fine, Qian, Jaeger, &
Jacobs, 2010; Kleinschmidt, Fine, & Jaeger, 2012), and
the comprehender must infer this underlying structure
from these observed data.5 On the other hand, none of
these frameworks are actively generative: none of them
assume that the comprehender’s hypotheses about syn-
tactic structure are used to predictively pre-activate infor-
mation at lower levels of representation – that is, change
the prior distribution of belief at these lower levels, prior
to encountering bottom-up input. We will consider what
an actively generative computational framework of
language comprehension might look like when we con-
sider predictive pre-activation in Section 3.

2. Using different types of information within
a context to facilitate processing of new
inputs at multiple levels of representation

2.1. The data and the debates

As noted in Section 1, we assume that, just before
encountering any new piece of bottom-up information,
the comprehender has built an internal representation
of context from the linguistic and non-linguistic infor-
mation in the context that she has encountered thus
far. We assume that this internal representation of
context includes partial representations inferred from
previously processed contextual input, ranging from sub-
phonemic representations (e.g. Bicknell et al., 2015;
Connine, Blasko, & Hall, 1991; Szostak & Pitt, 2013) all
the way up to higher-level representations. Such
higher-level representations may include partial rep-
resentations of specific events, event structures,6 event
sequences, general schemas (see Altmann & Mirkovic,
2009; Kuperberg, 2013; McRae & Matsuki, 2009, for
reviews and discussion), as well as partial message-
level representations (in the sense of Bock & Levelt,
1994; Dell & Brown, 1991).

In Section 1, we discussed the idea that the compre-
hender can use her representation of context to facilitate
syntactic and lexical processing. Syntactic and lexical
information, however, are not the only types of infor-
mation that can be facilitated by context during proces-
sing. In this section, we survey the evidence that a
comprehender can use information in a context to facili-
tate the processing of new information at multiple levels
of representation, and that she can draw upon multiple
different types of information within her internal rep-
resentation of context to facilitate such processing. At

this point, we continue to remain agnostic about
whether the comprehender is actually able to use infor-
mation within her internal representation of context to
predictively pre-activate upcoming information at lower
level(s) of representation prior to bottom-up input reach-
ing these lower levels. We will consider this question in
Section 3.

There is evidence that a comprehender can use her
internal representation of context to facilitate the proces-
sing of coarse-grained semantic categories (Altmann &
Kamide, 1999; Kamide, Altmann, & Haywood, 2003; Pac-
zynski & Kuperberg, 2011, 2012) as well as finer-grained
semantic properties (Altmann & Kamide, 2007;
Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002;
Federmeier & Kutas, 1999; Kamide et al., 2003; Kuper-
berg, Paczynski, & Ditman, 2011; Matsuki et al., 2011;
Metusalem et al., 2012; Paczynski & Kuperberg, 2012;
Xiang & Kuperberg, 2015) of incoming words. These
and other findings can be taken as evidence that we
are able to predict (in the minimal sense, as defined in
Section 1) the most likely structure of an upcoming
event (a representation of “who does what to whom”:
e.g. Altmann & Kamide, 1999; Garnsey et al., 1997;
Hare, McRae, & Elman, 2003; Kamide et al., 2003; Pac-
zynski & Kuperberg, 2011, 2012; Wilson & Garnsey,
2009), quite specific information about an upcoming
event (e.g. Chambers et al., 2002; Kaiser & Trueswell,
2004; Kamide et al., 2003; Matsuki et al., 2011; Metusalem
et al., 2012; Paczynski & Kuperberg, 2012), information
about past or future events and states (e.g. Altmann &
Kamide, 2007; Hare et al., 2003; Kuperberg et al., 2011;
Hartshorne, O’Donnell & Tenenbaum, 2015; Pykkönen &
Järvikivi, 2010; Rohde & Horton, 2014; Xiang & Kuper-
berg, 2015), as well as more general schema information
(e.g. Paczynski & Kuperberg, 2012).

In addition, there is a large body of evidence that a
comprehender can use her internal representation of
context to facilitate the processing of incoming infor-
mation at multiple other levels of representation. For
example, contextual information can lead to facilitated
processing of incoming information at the level of syn-
tactic structure (see Section 1, and Arai & Keller, 2013;
Farmer, Christiansen, & Monaghan, 2006; Garnsey et al.,
1997; Gibson & Wu, 2013; Hare et al., 2003; Rohde,
Levy, & Kehler, 2011; Tanenhaus, Spivey-Knowlton, Eber-
hard, & Sedivy, 1995; Wilson & Garnsey, 2009), phonolo-
gical information (Allopenna, Magnuson, & Tanenhaus,
1998; DeLong et al., 2005), and orthographic information
(DeLong et al., 2005; Dikker, Rabagliati, Farmer, & Pylkkä-
nen, 2010).

Moreover, facilitation of new incoming information
can stem from multiple types of information within a
given context. For example, to facilitate semantic
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processing of new words, comprehenders are able to use
information within a linguistic context about specific dis-
course connectives (Rohde & Horton, 2014; Xiang &
Kuperberg, 2015), inferential causal relationships (Kuper-
berg et al., 2011), the selection restrictions of a verb
(Altmann & Kamide, 1999; Paczynski & Kuperberg,
2012), the tense of a preceding verb (Altmann &
Kamide, 2007), the combination of a specific verb and
argument (Kamide et al., 2003; Matsuki et al., 2011; Metu-
salem et al., 2012; Paczynski & Kuperberg, 2012), pre-
verbal arguments (Bornkessel-Schlesewsky & Schle-
sewsky, 2009; Kamide et al., 2003), specific prepositions
(Chambers et al., 2002), and prosody (Kurumada,
Brown, Bibyk, Pontillo, & Tanenhaus, 2014; Snedeker &
Yuan, 2008). Similarly, to facilitate the processing of
incoming information at the level of syntactic structure,
comprehenders can use information within a verbal
context about its referential discourse structure (Gibson
& Wu, 2013), discourse coherence relationships (Rohde
et al., 2011), thematic relationships between verbs and
arguments (Garnsey et al., 1997; Wilson & Garnsey,
2009), the specific sense of a verb (Hare et al., 2003), or
even their knowledge about a verb’s phonological typi-
cality (Farmer et al., 2006). There is also evidence that
syntactic information within a context can facilitate the
processing of orthographic information (Dikker et al.,
2010) or even low-level perceptual features (Dikker,
Rabagliati, & Pylkkänen, 2009). Finally, comprehenders
can pick up on non-verbal information in the context to
influence the processing of a referent (e.g. Knoeferle,
Crocker, Scheepers, & Pickering, 2005; Sedivy, Tanen-
haus, Chambers, & Carlson, 1999; Tanenhaus et al., 1995).

Taken together, this literature supports the idea that,
at any given time, a comprehender’s internal represen-
tations of context encodes multiple different types of
information, at different grains of representation (see
also Jackendoff, 1987, pp. 112–115 for theoretical discus-
sion). How much information is maintained at each of
these different levels, and for how long, remains an
open question (see e.g. Bicknell et al., 2015; Dahan,
2010), but it seems fair to assume that the maintenance
of lower level information within the internal represen-
tation of context is shorter-lived than higher-level
information.

This literature also highlights the fact that because
language processing is highly interactive, with extensive
communication across representational levels during
processing (Elman, Hare, & McRae, 2004; McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1982), many
of these different types of information, encoded within
the internal representation of context, can be used to
facilitate the processing of incoming information at
almost any other level of representation (see Altmann

& Steedman, 1988; Crain & Steedman, 1985; Tanenhaus
& Trueswell, 1995, for reviews and discussion). We next
consider the computational implications of this type of
interactivity for understanding the role of prediction in
language comprehension.

2.2. Computational insights

In the probabilistic models of parsing we considered in
Section 1, the aim of the parser was to infer the structure
of the sentence that was being communicated. This
structure was conceptualised as generating words or
word sequences. Several other generative probabilistic
models of language have attempted to model inference
at different levels and types of representation. For
example, phonetic categories can be understood as gen-
erating phonetic cues (Clayards et al., 2008; Feldman et
al., 2009; Kleinschmidt & Jaeger, 2015; Kleinschmidt,
Raizada, & Jaeger, 2015; Sonderegger & Yu, 2010;
Toscano & McMurray, 2010), while semantic categories
(Kemp & Tenenbaum, 2008) or topics (Griffiths, Steyvers,
& Tenenbaum, 2007; Qian & Jaeger, 2011) can be under-
stood as generating words.

One simplifying feature of all these models is that they
each generate just one type of input (although see
Brandl, Wrede, Joublin, & Goerick, 2008; Feldman, Grif-
fiths, Goldwater, & Morgan, 2013; Kwiatkowski, Gold-
water, Zettlemoyer, & Steedman, 2012, for exceptions
in the developmental literature). The ultimate goal of
comprehension, however, is not to infer a syntactic struc-
ture, a phonemic category, a semantic category or a
topic. Rather, it is to infer the full meaning of the input
– the message (Bock, 1987; Bock & Levelt, 1994; Dell &
Brown, 1991) or situation model (Johnson-Laird, 1983;
Van Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998)
that the speaker or writer intends to communicate
(Altmann & Mirkovic, 2009; Jaeger & Ferreira, 2013;
Kuperberg, 2013; McClelland, St. John, & Taraban,
1989). For a comprehender to infer this message, she
must draw upon multiple different types of stored infor-
mation. Given this logic, any complete generative model
of language comprehension (the process of language
understanding) must consider message-level represen-
tations as probabilistically generating information at
these multiple types and levels of representation. One
way of modelling this type of architecture might be
within a multi-representational hierarchical generative
framework – the type of framework that been proposed
as explaining other aspects of complex cognition (Clark,
2013; Friston, 2005; Hinton, 2007; see Brown & Kuper-
berg, in press; Farmer, Brown, & Tanenhaus, 2013; Picker-
ing & Garrod, 2007, for perspectives on language
processing).
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Within such a framework, the comprehender would
achieve her goal of inferring the producer’s message
by incrementally updating her hypotheses about this
message on the basis of each new piece of information
as it becomes available. Such inference and belief updat-
ing, which we described for syntactic parsing in Section
1, would proceed at all levels of the hierarchy of linguistic
representation. As discussed in Section 1, so long as the
comprehender’s probabilistic knowledge at these levels
of the hierarchy closely resembles the actual statistics
of the linguistic input, then she should be able to use it
to maximise the average probability of correctly (and
perhaps more quickly) recognising incoming information
at these levels of representation. This, in turn, should
enable information to pass more efficiently up the hierar-
chy so that she can update her message-level represen-
tation of context (indeed, within some frameworks, such
as predictive coding, it is only the information that is
unpredicted – or “unexplained” – that is passed up
from lower to higher levels of the hierarchy, see Clark,
2013; Friston, 2005). In the next section, we will extend
this idea by arguing that, under some circumstances,
information does not just flow up the hierarchy in a
bottom-up fashion, but that it can also flow down the
hierarchy, with information at higher levels being used
to predictively pre-activate information at lower levels.

3. Predictive pre-activation

3.1. The data and the debates

In Section 2 we presented evidence that we can use mul-
tiple types of information in the context to facilitate pro-
cessing of new inputs at multiple different
representational levels. Facilitation, however, does not
necessarily imply predictive pre-activation. To give a con-
crete example, imagine reading the context in (2) and
finding that it can be used to facilitate processing at
the phonological level (e.g. the consonant /kh/ or the
phonemes /k/`, /ɑɪ/`, and /t/). Just before encountering
the incoming word, “kite”, our internal representation
of context is likely to include a hypothesis, held with a
high degree of belief, at an event level of representation,
that the event being conveyed is <boy flies kite>. In
theory, there are two possibilities for how this high-
level inference/hypothesis might facilitate phonological
processing of the incoming word, “kite”. The first is that
we wait for the bottom-up input, “kite”, to activate its
phonological representation (and its neighbours), and
we then use our high-level event hypothesis to select
the correct phonological representation. The second
possibility is that we use our high-level event hypothesis
to predictively pre-activate the phonological

representation of “kite” prior to the bottom-up input
reaching this lower phonological level of representation.

In this section, we discuss the debate about whether
or not we can actually predictively pre-activate infor-
mation at lower representational levels on the basis of
information at higher levels within our internal represen-
tations of context, ahead of the bottom-up input reach-
ing these lower levels. This debate has a long history in
the language processing literature, and has been dis-
cussed with respect to the relationships between
several different levels and types of representation.

In the speech recognition literature, many researchers
would acknowledge that higher-level lexical information
that has been activated by prior bottom-up phonetic
input can be used to predictively pre-activate upcoming
potential phonemes, prior to new bottom-up acoustic
information arriving at the phonemic level of represen-
tation (Dahan & Magnuson, 2006; McClelland & Elman,
1986). In this literature, the main debate has been
whether feedback connections from the lexical level to
the phonological level can continue to influence the acti-
vation of the phonetic/phonological input that is cur-
rently being processed, such as lexical activity to fish
leading to further enhancement of activity to /fl/ (see
Norris, 1994; Norris & McQueen, 2008; Norris, McQueen,
& Cutler, 2000 for discussion).

In the sentence and discourse processing literatures,
there has been more controversy about whether
higher-level information within our internal represen-
tations of context can be used to predictively pre-acti-
vate upcoming information at lower levels of
representation (see Federmeier, 2007; Kutas et al., 2011
for discussion). Early models argued for predictive pre-
activation of lexical items (Morton, 1969). Later models,
however, argued that a message-level representation
of context influenced processing of new inputs only
after lexical (Forster, 1981; Marslen-Wilson, 1987;
Swinney, 1979) or more distributed (Gaskell & Marslen-
Wilson, 1997, 1999) representations had been initially
activated from the bottom-up input (see Frauenfelder
& Tyler, 1987, for discussion). Only at this stage could
this message-level representation exert its effect, acting
to select the most appropriate candidates. This slightly
later effect of context was said to lead to facilitated inte-
gration of the incoming word,7 and it distinguished these
frameworks from the more fully interactive activation
models from which they were originally inspired (Elman
& McClelland, 1984; McClelland & Rumelhart, 1981).
While constraint-based models of sentence processing
generally remained agonistic with respect to the role of
pre-activation in processing (MacDonald et al., 1994),
there was sometimes an implicit assumption that high-
level contextual influences like plausibility and coherence
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act primarily to select syntactic frames that had already
been activated by the bottom-up lexical input (see Fer-
reira, 2003; Kuperberg, 2007 for discussion).

3.2. Predictive pre-activation versus pre-
activation through priming

One theme that emerged from the lexical, sentence, and
discourse processing literatures, was a distinction
between pre-activation through top-down prediction,
and pre-activation through priming.8 Some researchers
distinguished between these processes, allowing pre-
activation through priming, but not predictive pre-acti-
vation, to influence processing of new bottom-up
input. Unlike predictive pre-activation, which entails the
use of high-level information within the internal rep-
resentation of context to pre-activate upcoming infor-
mation at lower level(s) of representation, priming was
assumed to stem from lingering activation due to pre-
viously processed material at lower levels of represen-
tation. The assumption was that this lingering
activation would facilitate processing of upcoming infor-
mation at this same lower level, through mechanisms
such as spreading activation (e.g. Forster, 1981; see also
Fodor, 1983).9 Priming was therefore often viewed as
non-targeted (in that activation was taken to spread
indiscriminately to related nodes at a single level of rep-
resentation), and short-term (in that any lingering acti-
vation of material at lower levels of representation in
the context was assumed to decay rapidly).

Some researchers also assumed other differences
between priming and predictive pre-activation. For
example, priming was often taken to be non-strategic
(in that it served no purpose), automatic (in that it
occurred without conscious control), and sometimes
even involuntary (in that it could not be suppressed).
This was again taken to be different from predictive
pre-activation, which, as noted in Section 1, was orig-
inally believed to be strategic and sometimes targeted
in that only one or a few highly probable candidates
were predicted (Becker, 1980, 1985; Forster, 1981;
Neely et al., 1989; Posner & Snyder, 1975).

A problem with interpreting this literature, however, is
that not every account that appealed to priming sub-
scribed to all of these assumptions, and exactly what dis-
tinguished pre-activation through priming from
predictive pre-activation was not always made explicit.
Moreover, there has sometimes been a tendency to
hold on to some older assumptions about both
priming and predictive pre-activation. For example, as
discussed in Section 1, prediction is no longer assumed
to be strategic or all-or-nothing, but rather implicit and
probabilistic in nature (e.g. DeLong et al., 2005;

Federmeier & Kutas, 1999), and there is also evidence
that even “automatic” priming can sometimes be
subject to some strategic control (e.g. Hutchison, 2007).

3.3. Arguments against predictive pre-activation

By the late 1990s, many psycholinguists were somewhat
dubious that predictive pre-activation played much of a
role in normal language comprehension (but see
Altmann, 1999; Federmeier & Kutas, 1999; Federmeier
et al., 2007; and also Tanenhaus et al., 1995, for early dis-
cussions of predictive pre-activation in the behavioural
and ERP literatures). There was certainly widespread
acknowledgment that high-level information within the
comprehender’s internal representation of context
could influence comprehension quickly and incremen-
tally. However, most sentence processing frameworks
assumed (either implicitly or explicitly) that such high-
level information facilitated the processing of new
lower level information only after this new lower level
information had initially been activated by the bottom-
up input.

There were several reasons for this scepticism. The
first was an intuition that allowing predictive pre-acti-
vation to influence processing might afford our prior
beliefs too much power, leading to distortions of percep-
tual or interpretational reality (e.g. Massaro, 1989). These
initial concerns, however, may have been overblown.
Within the speech recognition literature, there remain
some legitimate concerns that feedback loops between
lexical and phonemic representations might lead to
auditory hallucinations (see Norris et al., 2000, p. 302
for discussion). However, under the current proposal,
lexical inferences based on prior bottom-up input
would be used to pre-activate upcoming phonemic infor-
mation. Moreover, we argue that any predictive pre-acti-
vation would primarily influence perception in cases
when there is relatively high uncertainty about the
bottom-up input, as in, for example, the phonemic res-
toration effect (Warren, 1970), or, more generally, proces-
sing in the presence of high degrees of environmental
noise (McGowan, 2015; Miller, Heise, & Lichten, 1951;
Stilp & Kluender, 2010; Woods, Yund, Herron, & Ua
Cruadhlaoich, 2010; reviewed by Davis & Johnsrude,
2007).10 Similarly, in the sentence processing literature,
strong predictions, based on real-world knowledge or
frequent structures, can sometimes lead to misinterpre-
tations, particularly if they are compatible with certain
features within bottom-up input – so-called good
enough processing (Ferreira, 2003; for related discussion,
see Kuperberg, 2007). The key point is that these
phenomena are, in effect, examples of perceptual hallu-
cinations (in the case of speech perception) or
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“cognitive” hallucinations (in the case of good enough
processing), and the way that they can be explained is
precisely through the combination of strong predictive
pre-activation and (relative) uncertainty about the
bottom-up input.

A second concern that was sometimes raised about
predictive pre-activation is similar to that discussed in
Section 1: that it may entail costs of inhibiting or suppres-
sing predicted candidates that are not supported by the
bottom-up input. As we argued in Section 1, however, so
long as prediction is based on our prior beliefs and the
statistics of the input, then, within a purely rational fra-
mework of comprehension, the benefits of facilitation
should, on average, outweigh the costs.

A third argument against using higher-level infor-
mation in our internal representation of context to pre-
dictively pre-activate upcoming information is that
doing so might be metabolically costly. Proponents of
predictive pre-activation have sometimes ignored this
issue, focusing on the idea that, under cost-free assump-
tions, it is computationally the most efficient way for the
comprehender to keep up with the rapidly unfolding
bottom-up input. In fact, both sides of the argument
are likely to be valid, and when we turn next to compu-
tational insights, we will see how it may be possible to
formalise the trade-off between the costs of predictively
pre-activating lower level representation(s), and the
benefits of facilitated bottom-up processing at multiple
levels of representation.

A final reason why many psycholinguists in the late
1990s were reluctant to endorse predictive pre-acti-
vation was that, at the time, there was little direct evi-
dence for it. As discussed in Section 2, behavioural and
ERP studies provided evidence that higher-level infor-
mation in the internal representation of context could
facilitate processing of incoming information at multiple
lower representational levels. However, as also noted
above, it was often possible to argue that such facili-
tation was not actually due to predictive pre-activation
at lower representational levels, but rather due to
reduced integration at higher representational levels
(see Federmeier, 2007; Kutas et al., 2011). This changed
with a series of studies showing that, at least under
some circumstances, it is possible to detect behavioural
or neural activity to predicted versus unpredicted
inputs before the onset of these inputs.

First, the visual world paradigm allowed for the
measurement of eye movements while participants lis-
tened to (and sometimes acted upon) spoken language
while viewing an array of images (for an in-depth
review of these paradigms and their experimental
logic, see Tanenhaus & Trueswell, 2006). If a linguistic
context constrains towards the semantic, syntactic or

phonological properties of an upcoming word, our
eyes tend to move towards images that are related
(versus unrelated), along this representational dimen-
sion, to the predicted word or referent. Importantly,
these eye movements are sometimes anticipatory –
detectable before the target word is spoken. There
have now been numerous studies using the visual
world paradigm, and together they provide strong
evidence that, under certain circumstances, we are able
to predictively pre-activate upcoming information at
multiple representational levels, including syntactic
(Arai & Keller, 2013; Kamide, 2012; Tanenhaus et al.,
1995), semantic (Altmann & Kamide, 1999; Altmann &
Mirkovic, 2009) and phonological (Allopenna, et al.,
1998).

A second line of direct evidence for predictive pre-
activation came from a series of ERP studies that
reported differential modulation of neural activity prior
to the onset of predicted versus unpredicted words.
These studies used clever designs in which ERPs were
measured to function elements that were dependent
on a subsequent predicted content word (DeLong
et al., 2005; Van Berkum, Brown, Zwitserlood, Kooijman,
& Hagoort, 2005; Wicha, Moreno, & Kutas, 2004). For
example, DeLong et al. (2005) showed that, in written
contexts like (2), a smaller negativity was evoked by
the article “a”, relative to the article “an”. “An” can only
precede words starting with a vowel, and so it is incon-
sistent with the predicted noun, “kite”. This finding there-
fore provides strong evidence for predictive pre-
activation – not only for upcoming semantic, but also
for upcoming phonological and orthographic infor-
mation. Other studies using similar types of designs in
other languages have shown evidence for predictive
pre-activation of syntactic gender (Van Berkum et al.,
2005; Wicha et al., 2004), not only during reading but
also in spoken language comprehension (Van Berkum
et al., 2005). In addition, a recent study using magne-
toencephalography (MEG) reported increased evoked
activity, localising to the left middle temporal gyrus, in
response to the presentation of highly predictive
(versus less predictive) adjectives, which was taken to
reflect lexical pre-activation (Fruchter, Linzen, Wester-
lund, & Marantz, 2015).

Finally, a few MEG studies have reported differential
low-frequency oscillatory neural activity to contexts
that are more versus less predictive for upcoming per-
ceptual features. Unlike evoked ERP or MEG responses,
which index neural activity that is time-locked to specific
events (Luck, 2014), and which are therefore best suited
to detecting facilitation when a new incoming stimulus
appears, low-frequency oscillatory activity may be
better suited for capturing top-down predictive neural
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activity, prior to the onset of an incoming stimulus (for
general discussion, see Arnal & Giraud, 2012; Engel &
Fries, 2010; Weiss & Mueller, 2012, and for recent discus-
sion in relation to language comprehension, see Lewis &
Bastiaansen, 2015). These studies generally used simple
contexts that constrained strongly (versus weakly) for the
perceptual features of new inputs. They report differential
oscillatory activity prior to the appearance of such inputs
that localised to early visual (Dikker & Pylkkänen, 2013)
and auditory (Sohoglu, Peelle, Carlyon, & Davis, 2012) cor-
tices. They therefore provide some suggestive evidence
that it is possible to predictively pre-activate upcoming
information, even at these low-level perceptual
representations.

Together, these studies provide strong evidence that,
at least under some circumstances, higher-level infor-
mation within our internal representations of context
can lead to the pre-activation of incoming information
at multiple lower level representations. This is important
because it implies that there are no hard architectural or
neuroanatomical constraints on the flow of information
activated by our internal representation of context on
the processing of new bottom-up inputs. However, it is
important to recognise that, just because we can use
information in a context to pre-activate multiple types
of information, this does not necessarily mean that we
will do so in every situation. Indeed, as we discuss
below, several factors have been shown to influence
both the degree and the representational level at
which upcoming information is predictively pre-
activated.

3.4. Factors influencing predictive pre-activation

The first important factor known to influence predictive
pre-activation is the constraint of the context. As dis-
cussed above, DeLong et al. (2005) provided evidence
that, following highly lexically constraining contexts
like (2), predictive pre-activation of the semantic, phono-
logical, and orthographic features of “kite” could modu-
late the ERP waveform, both before and as the critical
word, “kite”, was actually presented. Importantly, these
ERP effects were inversely proportional to the lexical con-
straint of the context, providing strong evidence that the
lexical constraint of a context can influence the degree of
pre-activation.

In addition to influencing the degree of pre-activation,
there is also evidence that contextual constraint can
influence the representational level of predictive pre-acti-
vation. Highly lexically constraining contexts can influ-
ence the very early stages of processing incoming
words, suggesting that they can be used to pre-activate
information at sublexical levels of representation, with

evidence from ERP and MEG studies for facilitation on
early ERP components (prior to the N400) that reflect
phonological (Brothers, Swaab, & Traxler, 2015; Connolly
& Phillips, 1994; Groppe et al., 2010), orthographic (Fed-
ermeier, Mai, & Kutas, 2005; Kim & Lai, 2012; Lau et al.,
2013), or even early perceptual (Dikker & Pylkkänen,
2011) processing (see also Staub, 2015, for a recent
review of early effects of lexically constraining contexts
on eye movements during reading). Contexts that are
less lexically constraining, however, do not appear to
modulate these early ERP components, even when
they facilitate semantic processing, as reflected by
modulation within the N400 time window (e.g. Dikker
& Pylkkänen, 2011; Paczynski & Kuperberg, 2012; see
also Lau et al., 2013).

Most empirical work has focused on the effects of
lexical constraint, as operationalised using cloze pro-
cedures (see note 1 in Section 1). Contexts that are lexi-
cally constraining, by definition, constrain strongly for
multiple types of representation (semantic, phonological,
and syntactic). It is important to recognise, however, that
a context can constrain strongly for just one type of
upcoming representation, leading just to facilitation of
incoming information at this representational level,
independently of any other. For example, a discourse
context can constrain strongly for a general semantic
schema (e.g. a restaurant schema), but not for a
specific event or specific lexical item, in which case
it can lead to facilitated semantic processing of
words whose semantic features are related to this
schema, as reflected by an attenuation of the N400
ERP component, even when this incoming word is
lexically highly unexpected or even anomalous (e.g.
Kolk, Chwilla, van Herten, & Oor, 2003; Kuperberg,
2007; Kuperberg, Sitnikova, Caplan, & Holcomb, 2003;
Metusalem et al., 2012; Paczynski & Kuperberg, 2012).

A second important factor that can influence predic-
tive pre-activation is the comprehender’s current goal.
One way of experimentally examining the effect of
goal is to manipulate task instructions or demands, and
there is indeed evidence that task can influence
whether neural (ERP) facilitation is seen to incoming
words (e.g. see Chwilla, Brown, & Hagoort, 1995; Kuper-
berg, 2007; Paczynski & Kuperberg, 2012; Xiang & Kuper-
berg, 2015; see also McCarthy & Nobre, 1993). For
example, in a recent ERP study, Xiang and Kuperberg
(2015) showed that, with a requirement to explicitly
judge discourse coherence, comprehenders were able
to construct a deep situation-level representation of
context and use it to access their stored knowledge of
real-world event relationships to predict upcoming
events, thereby facilitating semantic processing of
incoming coherent words. With no such requirement,
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however, no such semantic facilitation was seen, at least
for some types of sentences. There is less work using the
visual world paradigm that explicitly contrasts patterns
of eye movements with different task instructions.
However, there is at least some evidence that task
demands can influence the degree to which anticipatory
eye movements are seen towards a particular referent
(Altmann & Kamide, 1999; Ferreira, Foucart, & Engelhardt,
2013; Sussman, 2006; see Salverda, Brown, & Tanenhaus,
2011 for discussion in relation to the visual world para-
digm, and see Hayhoe & Ballard, 2005 for more general
discussion).

Goals, of course, are not only influenced by the types
of explicit tasks given to participants in psycholinguistic
experiments; they play a critical role in everyday
language comprehension (see Clark, 1992; Kuperberg,
2007; Tanenhaus & Brown-Schmidt, 2008 for discussion).
As noted above, one can understand the broad goal of
comprehension as being to infer the message communi-
cated by the speaker or writer. However, a comprehen-
der’s specific goal will depend on the particular
communicative situation in which she finds herself.
During everyday conversation, this will often be to
discern the producer’s underlying intention as conveyed
by speech acts (see Brown-Schmidt, Yoon, & Ryskin,
2015; Levinson, 2013; Yoon, Koh, & Brown-Schmidt,
2012 for discussion), and there are now several studies
using the visual real-world paradigm showing that the
presence or absence of anticipatory eye movements
can be influenced by multiple different types of infor-
mation in both the discourse and non-verbal context,
which can cue comprehenders towards carrying out
the particular action intended by the producer (see Sal-
verda et al., 2011; Tanenhaus, Chambers, & Hanna,
2004; Tanenhaus & Trueswell, 2006 for discussion and
reviews). For example, Chambers, Tanenhaus, and Mag-
nuson (2004) asked participants to act on spoken instruc-
tions like “Pour the egg in the bowl over the flour”, and
showed that anticipatory eye movements, which
reflected participants syntactic parse of the sentence,
were influenced by whether or not there were pourable
liquid eggs in a bowl (versus solid, non-pourable eggs in
a bowl). There is also evidence that our goals can influ-
ence comprehension during reading. For example,
both the mechanisms we engage during processing, as
well as our future recall, are influenced by whether we
read to prepare for a test or whether we read for enter-
tainment (van den Broek, Lorch, Linderholm, & Gustaf-
son, 2001).

Finally, whether or not we see pre-activation at any
particular representational level will likely depend on
the speed at which the bottom-up input unfolds: contex-
tual facilitation is greater when linguistic input is

presented at slower than faster rates (e.g. Camblin,
Ledoux, Boudewyn, Gordon, & Swaab, 2007; Wlotko &
Federmeier, 2015). Moreover, the degree to which pre-
dictive pre-activation (versus bottom-up input) drives
button presses during self-paced reading or eye move-
ments during reading is known to be sensitive to the
relative importance of comprehension speed versus
accuracy (see Norris, 2006 for discussion), which can, in
turn, be affected by external reward structures (cf. Bick-
nell, 2011; Bicknell & Levy, 2010; Lewis et al., 2013; see
also Lewis, Howes, & Singh, 2014).

Taken together, all these factors suggest that the
question we should be asking is not whether we can
use higher-level information in our representation of
context to predictively pre-activate upcoming infor-
mation at lower levels of representation, but rather
when we do so. We now consider the computational
issues that may shed light on the question of when,
and to what degree, we use higher-level information
within our internal representation of context to pre-acti-
vate upcoming information at lower representational
level(s).

3.5. Computational insights

In computational terms, predictive pre-activation can be
understood as the use of beliefs at a higher level of rep-
resentation (level k) to change the prior distribution at a
lower level of representation (k− 1), ahead of new
bottom-up input reaching this lower level represen-
tation. So long as such predictive pre-activation is
based on the comprehender’s stored probabilistic knowl-
edge, then, on average, it will serve to reduce the degree
of shift that the comprehender expects when she
encounters new input at this lower level of represen-
tation: it will reduce her expected surprise at k− 1. In
other words, by shifting her prior beliefs at k− 1 prior
to encountering new information at k− 1, when such
new information does reach k− 1, any further shift in
belief (Bayesian surprise) will, on average, be less than
if she had not pre-activated (shifted the prior at k− 1)
at all. Information that has been pre-activated at k− 1
should therefore, on average, be supported by the new
bottom-up input to k− 1, and its processing should
therefore be relatively facilitated.

Note that an architecture in which inferences at
higher levels of representation lead to the generation
of predictions at lower level(s) by changing the prior
probability belief distributions at these lower levels, is
not only generative in the theoretical sense described
in Sections 1 and 2; it is actively generative in the sense
that, during real-time processing, information is passed
down to lower levels of representation (i.e. higher-level
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information is used to predictively pre-activate lower
level information). This propagation of probabilistic
beliefs from higher to lower level representations is
said to be subserved by internal generative models
(Friston, 2005; Hinton, 2007; cf. forward models in the
motor literature).11

Faster recognition at lower levels of representation
should enable information to pass more efficiently up
the hierarchy to the highest message-level represen-
tation. Therefore, if we assume a completely rational fra-
mework, predictive pre-activation should, on average,
lead to more efficient comprehension. There is,
however, an important caveat to this claim: our brains
do not have unbounded metabolic resources, and
there are likely to be metabolic costs of predictively
passing down information from higher to lower level
representations (e.g. Attwell & Laughlin, 2001; Laughlin,
de Ruyter van Steveninck, & Anderson, 1998). Suppose,
for example, a comprehender invested large metabolic
costs in passing down information from level k to k− 1,
then even if, on average, Bayesian surprise was less if
she had not pre-activated information at k− 1, she
might still have unnecessarily wasted metabolic
resources by pre-activating information at k− 1 in the
first place (for related discussion, see Norris, 2006, p. 330).

One way of understanding how a comprehender
might best trade off the benefits and costs of predictive
pre-activation is to assume that she uses the metabolic
and cognitive resources she has at her disposal in a
rational fashion (e.g. Griffiths, Lieder, & Goodman, 2015;
Howes, Lewis, & Vera, 2009; Simon, 1956 for applications
and discussion in relation to language processing, see for
example, Bicknell et al., 2015; Lewis et al., 2014; Norris,
2006). Within this type of bounded rational framework,
both predictive pre-activation, as well as any resulting
predictive behaviour, can be considered as having a
utility function that weighs its advantages and disadvan-
tages. The aim of a resource-bound comprehender is to
maximise the utility of any predictive pre-activation.
Below we discuss two mutually compatible ways in
which she can do this.

The first is to only predictively pre-activate to the
degree and at the level(s) of representation that, on
average, serve her ultimate goal. Intuitively, it seems was-
teful to predictively pre-activate information when it is
not necessary to do so. For example, if the comprehen-
der’s goal is to deeply comprehend a sentence, then
she will likely use high-level representations (events
and event structures) to predictively pre-activate infor-
mation at the lower levels of representation (e.g. seman-
tic and syntactic) that will enable her to achieve this goal.
If, however, the comprehender’s goal is to monitor for
the word “reviewer”, then she may be more likely to

pre-activate information at the lower levels of represen-
tation (e.g. phonological) that will enable her to most
efficiently perform this task.

One way of understanding the role of goal in relation
to the type of architecture outlined above, is to concep-
tualise it as defining the generative model that the agent
is employing at any given time, such that the goal is
achieved by minimising Bayesian surprise across the
whole model (see Friston et al., 2015, for a more
general discussion of the relationships between utility
and generative models). Extrapolating to language com-
prehension, achieving the goal of inferring the produ-
cer’s underlying message would entail minimising
Bayesian surprise at the message-level representation,
as well as at all levels of representation below it that
allow the comprehender to achieve this goal.

Understanding the role of goal within this type of fra-
mework can also help explain how task can influence
how much the comprehender values, for instance,
speed or accuracy of recognition (for applications of
this idea to reading, see Bicknell & Levy, 2012; Lewis
et al., 2013; see also Howes et al., 2009). Finally, this fra-
mework extends nicely to understanding decisions
about behaviours that are predictively triggered as a
function their utility. For example, it might potentially
explain when anticipatory eye movements are seen
based on the expected gain or utility of such eye move-
ments (for related discussion, see Hayhoe & Ballard, 2005;
for applications to reading, see Bicknell & Levy, 2012;
Lewis et al., 2013). More generally, this perspective
suggests that a failure to observe behavioural evidence
of predictive pre-activation at a particular represen-
tational level does not necessarily imply that we are
not able to predictively pre-activate information at this
level of representation (even when this information is,
in principle, available within the preceding context).
Since the utility of predictive behaviours depends on
task, goal, and the statistical contingencies between
stimuli, it is necessary to consider their contributions
before concluding that predictive pre-activation at any
given representational is not possible. Critically, evidence
that we predict during naturalistic language processing
tasks (Brown-Schmidt & Tanenhaus, 2008) and in every-
day conversation (de Ruiter et al., 2006), suggests that
the utility of predictive pre-activation is relatively high
during everyday language processing.

The second (and related) way in which the resource-
bound comprehender might be able to maximise the
utility of her predictions and rationally allocate resources,
is to estimate the reliability of her prior at any given level
of representation within her generative model, and use
this estimate to modulate the degree to which she
updates her beliefs (for a given prior distribution and
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likelihood function) at this level of representation (i.e.
“weight” prediction error, for related discussion, see
Feldman & Friston, 2010; Friston, 2010). Such estimations
of reliability may play an important role in allowing us to
flexibly adapt comprehension to the demands of a given
situation. For example, during speech perception, it may
allow us to quickly recognise familiar individual speakers,
generalise our mechanism of processing to similar
groups of speakers, accents and dialect, and adapt to
novel speakers (see Kleinschmidt & Jaeger, 2015 for dis-
cussion), and, as discussed in Section 4, it may allow us to
comprehend words that violate contexts that are highly
lexically constraining.

Finally, this broad utility-based framework could, in
theory, accommodate the metabolic costs of predictive
pre-activation itself (as well as any metabolic costs of
bottom-up message-passing). Such metabolic costs
might, for example, be influenced by the speed at
which the bottom-up linguistic input unfolds. This is
because it presumably takes more energy to pre-activate
upcoming information at a given level of representation
before new input arrives at this level of representation,
and so we are most likely to predictively pre-activate
upcoming lower level information when the input
unfolds at a slower rather than a faster rate. The costs
of predictive pre-activation are also likely to be influ-
enced by the speed of neural information flow, which
is likely to differ between individuals, within individuals
across the lifespan (e.g. Federmeier, 2007; Federmeier,
Kutas, & Schul, 2010), and which is likely to be affected
by different psychopathologies (see Brown & Kuperberg,
in press; Kuperberg, 2007 for discussion).

In sum, by considering our predictions as having a
utility, which is influenced by Bayesian surprise, our
goals, as well as the metabolic costs of predictive pre-
activation, it may be possible to understand when, to
what degree, and at what level(s) of representation we
pre-activate upcoming information at any given time,
and to what degree we weight these predictions
against new incoming evidence.

4. Predictive pre-updating and the
consequences of prediction violation

4.1. The data and the debates

Within the psycholinguistics literature, some have argued
that, even if we do use higher-level information within our
internal representation of context to predictively pre-acti-
vate information at lower representational level(s), this still
does not constitute true prediction; “true” prediction,
these researchers might argue, goes beyond predictive
pre-activation by entailing some kind of “commitment”

to these pre-activated candidates, ahead of encountering
or combining new bottom-up input.

Different researchers have discussed the idea of com-
mitment in different ways. Some have distinguished
between a graded pre-activation of multiple candidates,
and a predictive commitment to one specific pre-acti-
vated candidate such as a single lexical item (Van
Petten & Luka, 2012). Others have distinguished
between a graded pre-activation of multiple candidates
within long-term memory (which we have referred to
here as predictive pre-activation), and some kind of com-
mitment to using one (or more) of these candidate(s) to
pre-update the internal representation of context (e.g.
Kamide, 2008; Lau et al., 2013). For example, Lau et al.
(2013) suggested that, after reading context (4a), just
before encountering the incoming word (“kite”), the
comprehender builds a partial representation of the
event (<boy flies>) within working memory, which she
uses to predictively pre-activate lower level represen-
tation(s) of <kite> (e.g. its semantic features and its pho-
nological properties) within long-term memory. Pre-
updating would refer to the additional step of updating
her internal representation of context, within working
memory, such that it now contains the pre-activated
lower level information in addition to the partial event
representation.

One notion that seems to be common to these views
is the idea that, if such predictive commitments are vio-
lated by the bottom-up input (e.g. the word “plane” is
encountered instead of “kite”), this would lead to a
further increase in reaction times or additional neural
activity that goes beyond what would ensue if the com-
prehender had not committed in this fashion. These
increases in reaction time or prolonged neural activity
have sometimes been conceived of as reflecting the
costs or consequences of violating a strong prediction
(see DeLong, Troyer, & Kutas, 2014; Federmeier, 2007;
Kutas et al., 2011 for discussion).

(4a) The day was breezy so the boy went outside to
fly a…

(4b) … kite
(4c) … plane
(5a) It was an ordinary day and the boy went outside

and saw a…
(5b) … plane

Experimentally, the way researchers have sought evi-
dence for additional neural or behavioural processing
associated with violating strong, high-certainty predic-
tions is to compare behavioural responses or neural
activity to incoming words like (4c), which violate con-
texts like (4a) that constrain very strongly for a different
specific lexical item (<kite>) or event (<boy flies kite>),
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and incoming words like (5b) that follow non-constrain-
ing (non-predictable) contexts like (5a). Any differences
in processing time or neural activity between the critical
incoming words in (4c) and (5b) are taken to reflect the
additional processing engaged as a result of violating a
strong prediction. This difference is compared with
another contrast – between (5b) and (4b). In (4b), the
critical word is fully supported by the highly constraining
context. Any differences in processing time or neural
activity between (5b) and (4b) are taken to reflect
reduced facilitation (due either to reduced pre-activation
at lower level(s) of representation, or reduced integration
at the higher event level of representation).

Behavioural studies using this type of logic have found
mixed evidence that prediction violations (4c vs. 5b) lead
to increased processing, over and above reduced predic-
tive facilitation (5b vs. 4b) (Forster, 1981; Frisson, Rayner,
& Pickering, 2005; Schwanenflugel & Lacount, 1988;
Schwanenflugel & Shoben, 1985; Stanovich & West,
1981, 1983; Traxler & Foss, 2000). One reason for these
mixed findings may be that not all of these studies
matched the probability of critical words in (4c) and (5b).

Some evidence for additional neural processing that is
specifically associated with violating highly lexically con-
straining contexts has, however emerged from the ERP
literature. While a full analysis of this literature is
outside the scope of this article (see Kuperberg, 2013;
Van Petten & Luka, 2012, for reviews), we note that critical
words like (4c), which violate highly lexically constraining
contexts like (4a), evoke a larger anteriorly distributed
late positivity than critical words like (5b). This is the
case even when the critical words in these two conditions
are matched on their cloze probabilities, and even when
they evoke N400s of the samemagnitudes (e.g. Federme-
ier et al., 2007). There is also evidence for additional pro-
longed neural processing, beyond that reflected by the
N400, in association with words that violate contexts
that constrain very strongly for a specific event structure
- a specific interpretation of ‘who does what to whom’,
without necessarily constraining for a specific lexical
item or event. This additional prolonged processing
manifests as another late positivity ERP component
with a more posterior scalp distribution, known as the
P600 (see Kuperberg, 2007, 2013 for reviews). Together,
these late positivity effects provide some evidence that
the brain can incur additional neural consequences
when it encounters words that violate highly constrain-
ing contexts, over and above those reflected by the N400.

4.2. Computational insights

The psycholinguistic construct of pre-updating is compa-
tible with the hierarchical, actively generative

architecture discussed in the previous section. Within
this architecture, pre-updating corresponds to the com-
pletion of an inference at a particular level of represen-
tation, in which the shift from prior to posterior gives
rise a very high-certainty posterior distribution with
belief centred over only very few (and possibly one)
high probability hypotheses. This pre-updating, in turn,
leads to strong predictive pre-activation at lower levels
of representation. Note that this view is somewhat differ-
ent from the account of predictive pre-updating
described above (e.g. Lau et al., 2013), which assumed
that pre-activation preceded pre-updating (e.g. first
using a partial representation of an event, <boy flies>,
to predictively pre-activate lower level semantic, syntac-
tic and/or phonological information, and only then pre-
updating the internal representation of context with
this pre-activated information). Within a hierarchical
actively generative architecture, these stages are
reversed: the comprehender is assumed to have
already pre-updated her belief about the entire event
that the producer is attempting to convey (<boy flies
kite>) – a hypothesis that she holds with a high degree
of belief (with a low degree of belief over hypotheses
about other possible events). This high certainty infer-
ence or prediction is what leads her to predictively pre-
activate information at lower levels of representation.
(Note also that, given that the comprehender’s internal
representation of context is multi-representational, as
discussed in Sections 2 and 3, pre-updating is assumed
not only to occur at high levels of representation, such
as events or event structures, but also at other represen-
tational levels. For example, inferring a particular lexical
item with a high degree of probability might correspond
to pre-updating of beliefs at the lexical level of represen-
tation, leading to predictive pre-activation of upcoming
phonemes).

One remaining question concerns the neural signa-
tures associated with violations of highly constraining
contexts, that is, the late positivities described above.
One possibility is that these late positivities reflect com-
putational mechanisms that go beyond simple belief
updating (Bayesian surprise) at any single level of rep-
resentation. They might, for example, reflect a process
of adaptation (or learning), in which the comprehender
updates her entire internal generative model to better
reflect the broader statistical structure of the current
environment (see Kuperberg, 2015, for further discus-
sion; see also Kuperberg, 2013). On this account, after
encountering “plane” (instead of “kite”) following
context (4a), the comprehender might update her
beliefs about the statistical contingencies between her
semantic, syntactic, and phonological knowledge (for
computational extensions of this type of generative
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framework to adaptation during language processing,
see Fine et al., 2010; Kleinschmidt et al., 2012; Kleinsch-
midt & Jaeger, 2015).

A second possibility, which is slightly different
although related to the first, is that the late positivities
reflect a type of “model switching”. For example, the
comprehender might have previously learned (and
stored) different generative models that correspond
different statistical environments (Kleinschmidt &
Jaeger, 2015, pp. 180–181; for related models beyond
language processing, see also Gershman & Niv, 2012;
Qian, Jaeger, & Aslin, 2012). For example, comprehenders
might have learned generative models for particular
genres (Fine, Jaeger, Farmer, & Qian, 2013; Kuperberg,
2013), dialects (Fraundorf & Jaeger, 2015; Niedzielski,
1999), or accents (Hanulikova, van Alphen, van Goch, &
Weber, 2012). They might even have learned generative
models for situations in which normal statistics comple-
tely break down, such as when participating in exper-
iments (cf. Jaeger, 2010, p. 53) or when talking to
someone believed to have a language deficit (Arnold,
Kam, & Tanenhaus, 2007). The late positivities might
then reflect a re-allocation of resources associated with
inferring (or switching to) these new generative models
(for further discussion, see Kuperberg, 2015). Exploring
these possibilities will be an important step in fleshing
out the generative architecture described here.

5. Towards a hierarchical multi-
representational generative framework of
language comprehension

In this review, we considered several ways in which pre-
diction has been discussed in relation to language com-
prehension. In Section 1, we argued that, in its minimal
sense, prediction implies that, at any given time, we
use high-level information within our representation of
context to probabilistically infer upcoming information
at this same higher-level representation. In Section 2,
we surveyed a large body of work suggesting that we
can use multiple types of information within our rep-
resentation of context to facilitate the processing of
new bottom-up inputs at multiple other levels of rep-
resentation, ranging from syntactic, semantic, to phono-
logical, orthographic, and perceptual. In Section 3, we
discussed evidence that, at least under some circum-
stances, facilitation at lower level representations
results from the use of higher-level inferences to predic-
tively pre-activate information at these lower level(s),
ahead of new bottom-up information reaching these
levels. We also discussed several factors known to influ-
ence the degree and representational level(s) to which
we predictively pre-activate, suggesting that these

factors might act by influencing the utility of predictive
pre-activation. Finally, in Section 4, we suggested that,
when our inferences at high-level representations are
particularly certain (corresponding to the psycholinguis-
tic construct of pre-updating), and the bottom-up turns
out to be incompatible with this high-certainty inference,
this will lead to additional neural processing, which
might reflect adaptation.

In the psycholinguistics literature, the constructs we
considered in this review have sometimes been dis-
cussed as being qualitatively different from one
another. For example, using context to facilitate the pro-
cessing of upcoming information has sometimes been
viewed as distinct from using context to pre-activate
upcoming information, and predictive pre-activation
has sometimes been viewed as being distinct from pre-
updating. Here, however, we have argued that these
constructs may be linked by appealing to a hierarchical,
dynamic, and actively generative framework of language
comprehension, in which the comprehender’s goal is to
infer, with as much certainty as possible, the message-
level interpretation or situation model that the producer
intends to communicate, at a rate that allows her to keep
up with the speed at which the linguistic signal unfolds.

Within this framework, this goal is achieved through
incremental cycles of belief updating (Bayesian infer-
ence) at multiple levels of representation – the highest
message-level representation, as well as at all the levels
below that allow the comprehender to achieve her
specific goal. We have also suggested that the compre-
hender actively propagates beliefs/predictions down to
successively lower levels of representation (correspond-
ing to predictive pre-activation). In this way, when new
bottom-up input is encountered at each of these levels
of representation, any Bayesian surprise will, on
average, be less than if the comprehender had not pre-
dictively pre-activated at all. Finally, we have suggested
that, by weighting the degree of updating by her esti-
mates of relative reliabilities of her priors and likelihoods
at any given level of representation, a comprehender
with bounded resources can achieve this goal more effi-
ciently, quickly, and flexibly. Thus, within this type of
actively generative framework, prediction is not simply
an “add-on” that aids the recognition of bottom-up
input; it plays a pivotal role in driving higher-level infer-
ence: the goal of comprehension itself.

Of course, there is much work to be done in formalis-
ing and implementing this framework. By adopting a
probabilistic approach in discussing the role of predic-
tion in language comprehension at Marr’s computational
level analysis, we are not claiming that the brain literally
computes probabilities, but rather that it may be possible
to describe what it is computing in probabilistic terms. In
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addition, as has sometimes been pointed out, we are
consciously aware of only one experience (or, in the
case of language, one interpretation) at any one time
(see Jackendoff, 1987, pp. 115–119, for discussion). It
will therefore be important to understand how such
probabilistic inference drives our (conscious) compre-
hension of language (for one theory in the perceptual
domain, see Hohwy, Roepstorff, & Friston, 2008, and dis-
cussion by Clark, 2013, pp. 184–185).

It is also important to note that constructs such as
Bayesian surprise can be instantiated in many different
ways at the algorithmic and neural levels. For example,
key components of incremental belief updating have
been implemented within recurrent connectionist net-
works (e.g. Chang et al., 2006; Dell & Chang, 2014;
Elman, 1990; Gaskell, 2003), where there are close links
between formalisations of prediction error and Bayesian
surprise (see Jaeger & Snider, 2013; McClelland, 1998,
2013 for discussion). Actively generative models have
also been instantiated in some neural networks (e.g.
Dayan & Hinton, 1996; Dayan, Hinton, Neal, & Zemel,
1995; Hinton, 2007, see also forward models in the
motor literature, e.g. Jordan & Rumelhart, 1992). Finally, it
has been proposed that this type of hierarchical actively
generative architecture is instantiated at the neural level
in the form of predictive coding (Friston, 2005, 2008;12

see Kuperberg, 2015; Lewis & Bastiaansen, 2015, for discus-
sion in relation to the neural basis of language comprehen-
sion), although it is important to recognise that the most
direct evidence for predictive coding in the brain comes
from Rao and Ballard’s (1999) initial descriptions within
the visual system. Given these considerations, we believe
that this type of multi-representational hierarchical actively
generative architecture can potentially provide a powerful
bridge across the fields of computational linguistics, psy-
cholinguistics and the neurobiology of language, and we
hope that, by sketching out its principles, this will stimulate
cross-disciplinary collaboration across these areas.

We conclude by taking up one more important point.
In this review, we have mainly focused on the role and
value of probabilistic prediction in language comprehen-
sion, generally assuming that our probabilistic predic-
tions mirror the statistics of our linguistic and non-
linguistic environments. In reality, however, during
everyday communication these statistics are constantly
changing: every person we converse with will have
their own unique style, accent and sets of syntactic and
lexical preferences. And every time we read a scientific
manuscript, a sci-fi chapter, or a novel by Jane Austen,
we will be exposed to quite different statistical structures
in our linguistic inputs. As alluded to in Sections 3 and 4,
the type of actively generative framework that we have
sketched out here is, in fact, well suited for dealing

with such variability in our environments. In particular,
our ability to weight Bayesian surprise by our estimations
of the reliability of our prior beliefs may play a more
general role in allowing us to rationally allocate
resources, allowing us to switch to and/or learn new gen-
erative models that allow us to optimally achieve our
goals in multiple different communicative environments
(for discussion in relation to phonological and speaker-
specific adaptation, see Kleinschmidt & Jaeger, 2015;
for discussion of other aspects of syntactic, semantic
variability, and adaptation, see Fine et al., 2013, and for
discussion of neural adaptation, in relation to the P600
and other late positivities in language comprehension,
see Kuperberg, 2013; Kuperberg, 2015). A key goal for
future research will be to understand whether the
multi-representational hierarchical actively generative
architecture that we have sketched out here can bridge
our understanding of the relationships between
language processing, adaptation, and learning (e.g.
Brown-Schmidt et al., 2015; Chang et al., 2006; Dell &
Chang, 2014; Jaeger & Snider, 2013).

Notes

1. To derive cloze probabilities, a group of participants are
presented with a series of sentence contexts and asked
to produce the most likely next word for each context.
The cloze probability of a given word in a given sentence
context is estimated as the proportion of times that par-
ticular word is produced over all productions (Taylor,
1953). In addition, the constraint of a context can be calcu-
lated by taking the most common completion produced
by participants who saw this context, regardless of
whether or not this completion matches the word that
was actually presented, and tallying the number of partici-
pants who provided this completion.

2. For an alternative conceptualisation of the linking function
between probabilistic belief updating and reading times,
see Hale (2003, 2011). For empirical evaluation and
further discussion, see Frank (2013), Linzen and Jaeger
(2015), Roark, Bachrach, Cardenas, and Pallier (2009), and
Wu, Bachrach, Cardenas, and Schuler (2010).

3. There are, of course, other ways of formalising prediction
error, dating back to Bush and Mosteller (1951) and
Rescorla and Wagner (1972). One difference between
these formalisations and a Bayesian formalisation (Baye-
sian surprise) is that the former do not take into account
uncertainty during inference or prediction (see Kruschke,
2008 for an excellent discussion). Regardless of how it is
formalised, however, prediction and prediction error play
a central role in both learning and processing, providing
a powerful way of bridging literatures and of potentially
linking across computational and algorithmic levels of
analysis (see Jaeger & Snider, 2013; Kuperberg, 2015).

4. As we will discuss in section 4, however, very low prob-
ability incoming words that mismatch the most likely con-
tinuation in a highly constraining context can evoke a
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qualitatively distinct late anterior positivity ERP effect, in
addition to the N400 effect.

5. In this sense, the meaning of the word generative has some
similarities with Chomsky’s original conception of a genera-
tive syntax, in which a grammar generated multiple poss-
ible structures (Chomsky, 1965). There is, however, an
important difference: whereas generative grammars in
the Chomskyan tradition served to test whether a sentence
could be generated from a grammar (in which case it was
accepted by that grammar), the generative computational
models referred to here represent distributions of outputs
(e.g., sentences). That is, rather than to stop at the question
of whether a sentence can be generated, these models aim
to capture how likely a sentence is to be generated
(although it is worth noting that a generative syntax was
formalised in probabilistic terms as early as Booth, 1969,
and that probabilistic treatments of grammars have long
been acknowledged in the field of sociolinguistics, see
Cedergren & Sankoff, 1974; Labov, 1969 for early
discussion).

6. Here, we refer to knowledge, stored at multiple grains
within memory about the conceptual features that are
necessary (Chomsky, 1965; Dowty, 1979; Katz & Fodor,
1963), as well as those that are most likely (McRae, Ferretti,
& Amyote, 1997) to be associated with a particular seman-
tic-thematic role of an individual event or state. This knowl-
edge might also include the necessary and likely temporal,
spatial, and causal relationships that link multiple events
and states together to form sequences of events. The
latter are sometimes referred to as scripts, frames, or
narrative schemas (Fillmore, 2006; Schank & Abelson,
1977; Sitnikova, Holcomb, & Kuperberg, 2008; Wood &
Grafman, 2003; Zwaan & Radvansky, 1998).

7. Note, however, that the term integration has been used in
different ways in the literature. The usage described here
contrasts integration with pre-activation (Federmeier,
2007; see also Van Petten & Luka, 2012, for discussion).
Others, however, have used the term integration to refer
more specifically to the process by which a word is com-
bined or unified with its context to come up with a prop-
ositional meaning (e.g. Hagoort, Baggio, & Willems, 2009;
Jackendoff, 2002; Lau, Phillips, & Poeppel, 2008).

8. The term, priming, is sometimes used simply to describe
the phenomenon of facilitated processing of a target
that is preceded by a prime, with which it shares one or
more representation(s), regardless of mechanism. Pre-acti-
vation is just one of these mechanisms. For example, mul-
tiple different mechanisms have been proposed to
account for the phenomena of both semantic priming
(see Neely, 1991 for a review) and syntactic priming (e.g.
Chang, Dell, & Bock, 2006; Jaeger & Snider, 2013; Tooley
& Traxler, 2010).

9. For example, memory-based models of text processing
assumed that simple lexico-semantic relationships within
the internal representation of context, approximating to
a “bag of words” (quantified using measures like latent
semantic analysis, Kintsch, 2001; Landauer & Dumais,
1997; Landauer, Foltz, & Laham, 1998), could interact
with lexico-semantic relationships stored within long-
term memory, and prime upcoming lexico-semantic infor-
mation through spreading activation (Kintsch, 1988;
McKoon & Ratcliff, 1992; Myers & O’Brien, 1998; Sanford,

1990; Sanford & Garrod, 1998). This was known as reson-
ance, and it can be distinguished from the use of high-
level representations of events or event structures (that
include information about “who does what to whom”) to
predictively pre-activate upcoming semantic features or
categories (see Kuperberg et al., 2011; Lau et al., 2013;
Otten & Van Berkum, 2007; Paczynski & Kuperberg, 2012
for discussion).

10. There is, however, also evidence that top-down influences
on the perception of lower level information is not the
exception, but rather the norm, at least at the lowest
levels of speech perception. For example, the internal dis-
tributional structure of phonological categories is known
to affect the perception of subphonemic acoustic similarity
(known as the perceptual magnet effect, Feldman et al.,
2009; Kuhl, 1991). This effect has been shown to be a
rational consequence of the fact that there is always uncer-
tainty about the perceptual input (due to noise in the
neural systems underlying perception). In inferring the
percept, comprehenders thus rely on what they know
about the statistical structure underlying the speech
signal (Feldman et al., 2009; see also Haefner, Berkes, &
Fiser, 2014, for a discussion of how sampling-based top-
down pre-activation can explain otherwise surprising cor-
relations in firing rates in neural populations).

11. Actively generative models also provide a link between
language comprehension and language production (for
discussion, see Jaeger & Ferreira, 2013; Pickering &
Garrod, 2007, 2013, and for further discussion of the
relationship between prediction in language comprehen-
sion and production, see Brown & Kuperberg, 2015; Dell
& Chang, 2014; Federmeier, 2007; Garrod & Pickering,
2015; Jaeger & Snider, 2013; Kurumada & Jaeger, 2015;
Magyari & de Ruiter, 2012).

12. Hierarchical predictive coding in the brain takes the prin-
ciples of the hierarchical generative framework to an
extreme by proposing that the flow of bottom-up infor-
mation from primary sensory cortices to higher level
association cortices constitutes only the prediction error,
that is, only information that has not already been
“explained away” by predictions that have propagated
down from higher level cortices (see Clark, 2013; Friston,
2005, 2008; Wacongne et al., 2011).
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