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Abstract

To make sense of the world around us, we must be able to segment a continual stream of sen-

sory inputs into discrete events. In this review, I propose that in order to comprehend events, we

engage hierarchical generative models that “reverse engineer” the intentions of other agents as

they produce sequential action in real time. By generating probabilistic predictions for upcoming

events, generative models ensure that we are able to keep up with the rapid pace at which percep-

tual inputs unfold. By tracking our certainty about other agents’ goals and the magnitude of pre-

diction errors at multiple temporal scales, generative models enable us to detect event boundaries

by inferring when a goal has changed. Moreover, by adapting flexibly to the broader dynamics of

the environment and our own comprehension goals, generative models allow us to optimally allo-

cate limited resources. Finally, I argue that we use generative models not only to comprehend

events but also to produce events (carry out goal-relevant sequential action) and to continually

learn about new events from our surroundings. Taken together, this hierarchical generative frame-

work provides new insights into how the human brain processes events so effortlessly while high-

lighting the fundamental links between event comprehension, production, and learning.
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1. Introduction

To act upon and make sense of the world around us—whether we are making our-

selves a cup of tea, watching a movie, reading a book, or cleaning the fridge—we draw

upon a rich store of knowledge, built over years of experience. How do we represent this

knowledge in memory, and how do we exploit it during the comprehension and produc-

tion of sequential action? In this review, I will argue that these questions can be fruitfully

addressed by appealing to a common set of computational principles—probabilistic pre-

diction, tracking the magnitude of prediction error, and tracking the certainty of our

beliefs about the goals of other agents (comprehension) and ourselves (sequential action),

at multiple time scales. I will bring these principles together within a hierarchical gener-
ative framework, showing how this framework can inform our understanding of the neu-

rocognitive mechanisms engaged in event comprehension while highlighting its close

relationship with the production of sequential action and learning.

2. Event representation

2.1. Core properties of an event

What is an “event”? The answer to this question will vary depending on the field of

inquiry: A linguist will respond differently from a visual neuroscientist. Nonetheless,

there seems to be some consensus about its core features and functional properties.

First, most would agree that events are composed of multiple different elements. In

Linguistics, there is a long tradition of describing these building blocks in terms of a cen-

tral action and the “roles” that different entities play around this action (Dowty, 1989;

Fillmore, 1967; Gruber, 1965; Jackendoff, 1987; see Unal, Ji, & Papafragou, 2021, this

issue for discussion). For example, the event, <Woman swallows tea>, describes an

Action (“swallow”), an Agent (the “woman” who is carrying out the action), and a

Theme (the “tea” that undergoes this action). These semantic-thematic roles are central to

the structure of language,1 and they can be easily and automatically identified, even when

events are presented visually (Hafri, Papafragou, & Trueswell, 2013; Hafri, Trueswell, &

Strickland, 2018).

A second key property of events is that they convey a change in state in the world.
For example, the event, <Woman swallows tea>, describes a change in state of both the

tea (less tea in the cup) and the woman (more tea in the woman). For events like this,

which involve human agents, it is this change in state that bridges action and perception
(Ballard, Hayhoe, Pook, & Rao, 1997; Hommel, Musseler, Aschersleben, & Prinz, 2001;

Schmidt, 1975). Regardless of whether we are swallowing tea ourselves, or watching or

reading about someone else swallowing tea, it is impossible to divorce the action of swal-

lowing from the semantic features and functional properties of the drinker, who must

have a mouth, and the tea, which must be liquid.
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Third, most real-world events are finite in duration. Although some events last longer

than others, almost all events will eventually come to an end, and these endings are

marked by end states. For example, the event, <Woman swallows tea>, terminates with

the end state, [Tea consumed]. In Linguistics, end states are considered key to the con-

ceptual structure of the so-called bounded events (Comrie, 1976; Parsons, 1990; Vendler,

1957; see €Unal et al., 2021, this issue for discussion).2 In the study of goal-relevant

action, it has been proposed that the anticipation of end states is the key trigger of

actions, ranging from simple motor movements (“ideomotor action,” see Hommel et al.,

2001; James, 1890/1981; Lotze, 1852; Prinz, 1987) to complex sequences that define

longer-term goals and plans (e.g., Jones & Davis, 1965). Moreover, in addition to delin-

eating the termination of events, end states also function to probabilistically constrain the

set of events that can follow (see below).

Finally, and most importantly, events are inherently dynamic in nature (Altmann &

Ekves, 2019; Neisser, 1976). All of the properties described above presuppose the pas-

sage of time: An agent’s action can only bring about a change in the world, bridge action

to perception, and come to an end because time marches on. Events therefore play a criti-

cal role in the mental representation of time by bridging the past to the present, and the

present to the future.

2.2. Sequences of events

What one calls a single “event” versus a “sequence of events” also varies between

fields. When we describe events using language, we play tricks with time, taking only a

few words to convey activities that would unfold over much longer durations in the real

world. For example, when referring to the events conveyed by the sentence, “The woman

in the kitchen made herself a cup of tea and then cleaned the fridge,” a linguist or psy-

cholinguist might treat the contents of each clause as a single “event,” and discuss how

the two events, <woman made self tea> and <woman cleaned fridge>, are linked along

different dimensions such as space (both events take place in the kitchen), time (the sec-

ond event occurs after the first), reference (both events are carried out by the same

woman), and other types of causal or motivational connections (e.g., one might speculate

that the woman made herself a cup of tea to motivate herself to clean the fridge); see

Zwaan and Radvansky (1998).

When we think about how visual events are linked during real-world action and percep-

tion—the focus of this review—we do not have the luxury of skipping across time. As we

watch a woman make herself a cup of tea, this does not happen all at once; rather, this activ-

ity is composed of a sequence of shorter events that unfold over time, for example, <Fill ket-
tle with water>, <Switch on kettle>, <Put teabag in cup>, <Pour hot water into cup>, etc.
To link these events together, we draw upon our basic knowledge of how human agents act

upon their environment, given the constraints of our own bodies, the surrounding space, and

the affordances and functions of the objects around us (cf. Gibson, 1979; Glenberg, 1997).

We use this knowledge, in combination with what has come before, to determine what will

come next. The end state of even a single event functions as a precondition that constrains
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the possibility and probability of what events can follow (for early discussion, see Kno-

block, 1992; Schmidt, Sridharan, & Goodson, 1978; see also Botvinick & Plaut, 2004;

Cooper & Shallice, 2000). For example, after observing the event, <Woman fills kettle>,
our knowledge about a kettle’s affordances increases the probability that the next event will

be <Switch on kettle>. Additionally, the woman’s position in space excludes the possibility

that the very next event will show her opening the fridge if the fridge is outside arm’s reach.

Crucially, this spatial and functional knowledge is inherently time-dependent (see Neisser,

1976): A few moments later, it may be perfectly possible for the woman to open the fridge.

2.3. Event schemas

We also describe events in terms of our longer-term semantic knowledge that extrapo-

lates and generalizes our experience over many encounters with similar events. This knowl-

edge has been variously described as “schemas” (Anderson, 1978; Rumelhart, 1975),

“scripts” (Abelson, 1981; Bower, Black, & Turner, 1979; Schank & Abelson, 1977),

“frames” (Fillmore, 2006; Minsky, 1975), or “structured event complexes” (Grafman,

2002). For example, most of us have some intuition of what we mean by a “tea-making”

schema. However, as discussed by McRae, Brown, and Elman (2021, this issue), as soon as

we try to formalize the structure of these schemas in terms of fixed chains or hierarchies, or

try to hard-wire them into our computational models, we are confronted with an inconve-

nient reality: There are countless possible individual events that can fall into a particular

schema, and numerous different ways in which these events can be sequenced within a

given schema. For example, a “tea-making” schema can comprise a sequence of single

events like <Fill kettle with water>, <Switch on kettle>, <Put teabag in cup>, <Pour hot
water into cup>, <Open fridge>, <Get milk>, <Pour milk into tea>, <Pick up cup>, and
<Swallow tea>. Alternatively, it can comprise the (somewhat sad) sequence of <Put teabag
in cup>, <Fill cup with cold water>, <Heat cup of water in microwave>, <Pick up cup>, and
<Swallow tea>. Moreover, no individual event within a given sequence tells us exactly what

the sequence is about. For example, the event <Open fridge> can be part of a “Tea-making”

schema, a “Dinner party” schema, or a “Clean the fridge” schema. These observations sug-

gest that rather than representing event schemas as fixed, crystallized memory structures,

they must be encoded probabilistically such that the events and event sequences that are

most likely to occur within a given schema cluster together in representational space (see

McRae et al., 2021, this issue; Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick,

2013), but no single event or event sequence is bound to any given cluster. Moreover, clus-

ters of schema-relevant events must be available to assemble and disassemble dynamically

in any given situation so that we can mix and match according to our needs.

3. The challenges of event comprehension

To comprehend visual events as they unfold in real time, we must be able to quickly

mobilize the vast body of event knowledge described above, and use it to make sense of
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sequential actions produced by other agents. For example, imagine watching a woman in

her kitchen going about her morning routine. We see her fill the kettle with water, boil

the water, put a teabag into a cup, and pour hot water into the cup. We easily infer that

she is making a cup of tea. As we continue watching, we understand that she is cleaning

the fridge, talking on the phone, and working on her computer. Making sense of this

information feels effortless. However, given how quickly each individual event unfolds

before our eyes, and how frequently the woman’s goals change, event comprehension

presents an enormous computational challenge.

In this section, I first discuss the role of probabilistic prediction in allowing us to keep

pace with the rapid speed at which the input unfolds. I next discuss the challenge of

detecting boundaries between sequences of visually unfolding events, and summarize one

proposal of how we meet this challenge: by tracking the magnitude of prediction error. I
then consider a number of open questions in event comprehension, suggesting that these

questions can be addressed within a hierarchical generative framework, which is intro-

duced in the following section.

3.1. Probabilistic prediction

The major advantages of prediction during event comprehension are speed and accu-

racy. Perceptual information unfolds at a very fast rate. Moreover, it is sometimes

ambiguous or incomplete. By predicting ahead, we can exploit our prior knowledge to fill

in any gaps and remain one step ahead of the input. For example, as we watch the tea-

making sequence described above, and we see that the tea is ready, with the woman’s

hand next to the cup, instead of waiting passively for the next event to become available,

we can predict that the woman will next pick up the cup, giving us a head-start in pro-

cessing predicted bottom-up information when it becomes available.

Most frameworks of event comprehension assume that these predictions are generated

implicitly by an event model–a high-level representation of the prior context (the

sequence of events observed thus far) that is held in an active state within working mem-

ory (e.g., Radvansky & Zacks, 2011).3 It is also usually assumed that the predictions gen-

erated by an event model are further constrained by the presence of schema-relevant
knowledge within working memory. Some models additionally propose that these implicit

predictions are actively propagated down to lower levels of representation where they

pre-activate upcoming information at these lower levels (top-down predictive pre-activa-
tion; see Kuperberg & Jaeger, 2016, Section 4 for discussion). I will come back to the

distinction between implicit prediction and top-down predictive pre-activation later in the

review. For now, I emphasize that, so long as these predictions are probabilistic and

based on internal representations that mirror the statistical structure of the input itself (in

this case, the event model and schema-relevant event clusters), then they should increase

both the speed and accuracy of comprehension (see Kuperberg & Jaeger, 2016, Section 2

for discussion).

Supporting this idea, there is a large body of evidence from studies using event-related

potentials (ERPs), a direct neural index of online comprehension, showing that, relative
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to unpredictable events, predictable events are easier to process and generate less evoked

neural activity from 300 to 500 ms after event onset—a smaller N400 response (Kuper-

berg, 2016; Kutas & Federmeier, 2011). This is true both when events are described in

written text (e.g., Kuperberg, Brothers, & Wlotko, 2020; Kuperberg, Paczynski, & Dit-

man, 2011; Metusalem et al., 2012; Paczynski & Kuperberg, 2012; Van Berkum,

Hagoort, & Brown, 1999), and when they are depicted visually using sequences of static

images (e.g., Coderre, O’Donnell, O’Rourke, & Cohn, 2020; Cohn, Paczynski, Jackend-

off, Holcomb, & Kuperberg, 2012; West & Holcomb, 2002) or movie clips (e.g., Sit-

nikova, Holcomb, Kiyonaga, & Kuperberg, 2008).

3.2. The challenge of detecting environmental change: Event boundaries

Because probabilistic prediction is only optimal if it reflects the statistical structure of

the input itself, in order to continue to predict effectively, it is critical that we are able to

detect systematic changes in the statistical structure of our environment. It would clearly

be counterproductive to continue predicting tea-relevant events if the woman in the

kitchen has moved on to cleaning the fridge. By quickly detecting evidence for such

changes, we can disengage from our original {Woman makes herself a cup of tea} event

model and start to build a new {Woman cleans the fridge} event model.

Evidence that we are able to detect this type of systematic change comes from the

study of event boundaries. When viewing sequences of visual events, we are remarkably

consistent in being able to identify the natural boundaries between them, and this is true

at multiple time scales (Hanson & Hirst, 1989; Newtson, 1973; Newtson & Engquist,

1976; Zacks, Tversky, & Iyer, 2001). For example, when watching a series of events

depicting a woman first making tea and then cleaning the fridge, different observers will

consistently judge when tea making stops and fridge cleaning begins. Moreover, we are

able to detect these boundaries as events unfold in real time (e.g., Cohn, Jackendoff, Hol-

comb, & Kuperberg, 2014; Hard, Recchia, & Tversky, 2011; Kosie & Baldwin, 2019; Sit-

nikova et al., 2008).

Detecting this type of systematic change in the statistical structure of our environment

—that is, detecting the boundaries between sequences of visual events—is not trivial.

This is because, as noted in Section 2.3, there is significant variability in what specific

events or subsequences of events can belong to any given event model and its associated

schema. For example, the event, <Woman opens fridge>, can be part of a {Woman

makes herself a cup of tea} event model, a {Woman makes herself a sandwich} event

model, or a {Woman cleans the fridge} event model.

If we were able to observe all the events together as a batch, detecting the boundaries

between event models would be less challenging. This is because an event model is, in

part, defined by the full set of relationships between its component events. However, dur-

ing real-time comprehension, events become available sequentially over time. Therefore,

in order to continue predicting efficiently, we need to be able to infer event boundaries

based on limited information (see Qian, Jaeger, & Aslin, 2012 for a more general discus-

sion of this challenge).
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3.3. Prediction error as an indicator of environmental change

One proposal of how we are able to detect boundaries between sequences of events

during real-time comprehension comes from Event Segmentation Theory (Kurby &

Zacks, 2008; Radvansky & Zacks, 2011; Zacks, Speer, Swallow, Braver, & Reynolds,

2007). According to this theory, we track the magnitude of the implicit prediction error
produced by each incoming event—the degree to which that event is inconsistent with

the state of the current event model. If we encounter an event that is very dissimilar to

the event that we implicitly predicted, the resulting “prediction error” leads us to update

the contents of working memory by disengaging from the old event model, and its associ-

ated schema-relevant event clusters, and switching to a new event model.

This theory is supported by evidence that event boundaries do indeed coincide with

regions of unpredictability in the event stream: Events that occur immediately following

an event boundary are generally rated as more difficult to predict than events that occur

in the middle of two boundaries, and this is true at multiple time scales (Newtson, 1976;

Zacks, Kurby, Eisenberg, & Haroutunian, 2011). The theory also makes intuitive sense.

If, as we watch the woman make herself a cup of tea, we suddenly see her grab a sponge,

this event would produce a large prediction error, providing us with clear evidence that

both our current event model and associated tea-relevant clusters are no longer appropri-

ate.

3.4. Open questions

The account outlined above, however, leaves open many questions. First, how do we

initially build event models during event comprehension? For example, when we first

start watching the woman in her kitchen, how do we know what schema-relevant clusters

to retrieve from long-term memory to build a new {Make self a cup of tea} event

model?

Second, if we encounter an event that produces a large prediction error, how do we

know whether this error is large enough to disengage from our current event model and

start to build a new one? Event segmentation theory proposes that event boundaries are

inferred when the prediction error is large. But how large is “large”? Put another way,

how is it that we are sometimes able to refrain from disengaging from our current event

model, even when the input seems to violate prior predictions? For example, suppose

that, after watching most of the tea-making sequence, we strongly predict that the woman

is just about to pick up her cup and sip her tea, but instead we see her open the fridge;

this unpredicted event will produce a large prediction error, but should we necessarily

infer an event boundary and start to build a new event model? It may be that the woman

is, in fact, opening the fridge to get milk for her tea. Moreover, if a large prediction error

does lead us to detect an event boundary, why and how does this drive us to disengage

from our current event model, retrieve new schema-relevant information from long-term

memory, and switch to a new event model?
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Third, is the detection of a large prediction error the only indicator of an event bound-

ary? Baldwin and Kosie (2021, this issue) discuss evidence that, during visual event com-

prehension, we attend closely to incoming events at points in the event stream when we

are most uncertain about what we will see next. This raises the possibility that, when we

know that a particular sequence is coming to an end (e.g., after watching the entire tea-

making sequence and finally seeing the woman drink her tea), we are able to anticipate

the upcoming boundary. If this is the case, then can we exploit this uncertainty in the

event stream to disengage from the current event model and its associated schema-rele-

vant event clusters before we actually encounter the next unpredicted event?

I will argue that we can begin to address all these questions within a probabilistic hier-
archical generative framework in which we use internal hierarchical generative models,
together with an algorithm known as dynamic hierarchical predictive coding, to compre-

hend sequential events. This type of probabilistic generative framework has been used

successfully to model many aspects of perception and cognition (Griffiths, Kemp, &

Tenenbaum, 2008; see Perfors, Tenenbaum, Griffiths, & Xu, 2011 for an excellent intro-

duction), and hierarchical predictive coding has been proposed as a way of instantiating

probabilistic inference in the brain (Clark, 2013; Friston, 2005; Lee & Mumford, 2003;

Mumford, 1992; Rao & Ballard, 1997, 1999; Spratling, 2016b).

In the next section, I first introduce the broad principles of hierarchical generative
models, and sketch out the structure of a three-level hierarchical generative model that

we might engage to comprehend streams of visually unfolding real-world events. I next

describe the principles of dynamic hierarchical predictive coding, linking these principles

to psychological theories of event comprehension. In Section 5, I will return to the open

questions outlined above, showing how this framework can begin to address them.

4. A hierarchical generative framework

4.1. Generative models: Structure and principles

At the heart of a generative framework is the generative model. This is an internal

mental model that represents a subset of our knowledge that we believe is relevant to our

current situation. It describes our probabilistic assumptions about how observations from

the environment are caused (or “generated”) by underlying hidden (latent) causes. In its

simplest form, a generative model can be conceptualized as representing information at

two levels: a lower level at which each unit represents a single observation, and a higher

level that encodes the full set of possible causes of these observations. The parameters of

this model describe the probabilistic dependencies between the information represented at

these two levels. Therefore, the information at the higher level is encoded in a more

abstract form that captures the higher-order constraints of information encoded at the

lower level.

We can use this generative model to infer the most probable set of causes that gener-

ated any given observation or set of observations from the environment.4 Each of these
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causes is referred to as a hypothesis, and each hypothesis is held with a particular

strength—degree of belief. Together, the full set of beliefs can be described as a probabil-

ity distribution and so the sum of all beliefs must add up to 1. The statistically optimal

way of inferring causes from observations is to invert the generative model by applying

Bayes’ Rule. For a given set of observations, Bayes’ Rule can be used to shift our initial

beliefs (the prior probability distribution) to a new set of beliefs (the posterior probability
distribution)—a process known as belief updating.

As we will see, this type of two-level generative model is often insufficient to explain

the complex and multidimensional structure of our environmental observations. However,

multiple generative models can be linked together in a hierarchical fashion, with repre-

sentations at higher levels of the hierarchy encoding information at successively higher

levels of abstraction. In this type of hierarchical generative model, belief updating pro-

ceeds at multiple levels of the hierarchy, with the causes inferred at one level serving as

the observations for the level above. Through multiple cycles of belief updating, the

model should, in principle, settle on the combination of hypotheses that best explains the
statistical structure of the input (Pearl, 1982).

Generative models of this kind are usually specified at Marr’s first (computational)

level of analysis (Marr, 1971). When instantiated at Marr’s algorithmic or implementa-

tional levels, full “rational” Bayesian inference (cf. Anderson, 1990) is often neither tract-

able nor desirable. To my mind, a major advantage of this first level of description is that

it encourages us to articulate our assumptions about probabilistic representations and pro-

cesses in a way that can directly inform psychological theory (see Tauber, Navarro, Per-

fors, & Steyvers, 2017 for discussion). It is in this spirit that I now describe, in

qualitative terms, the structure of a three-level hierarchical generative model that might

represent our probabilistic assumptions about how other agents produce sequences of

real-world visual events, and how we could invert this model to make sense of these

inputs.

4.1.1. Inferring an event cluster from sequential events
To link visual events that unfold sequentially over time, a generative model would

need to encode our basic knowledge about how other agents interact with their surround-

ings to produce these events. As discussed in Section 2.2, this knowledge is inherently

grounded in the physical world. It includes our knowledge about space in relation to our

bodies, as well the functions and affordances of objects in our surroundings (Gibson,

1979; Glenberg, 1997). As also discussed, this knowledge interacts continuously with the

passage of time. It therefore follows that any generative model that encodes this knowl-

edge must be dynamic—that is, it must represent a state space (albeit one that is complex

and nonlinear) that continuously changes. The lower (first) level of the model would rep-

resent individual events as they become available, and the higher (second) level would

represent the cluster of linked events that, at any given time, is most likely to have gener-

ated the full sequence of individual events that we have observed.

In this type of dynamic probabilistic generative model, inference necessarily entails an

iterative process of belief updating and probabilistic prediction. When a new event is
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observed at the first level, this provides input to the second level, and the event cluster

that is being inferred is updated. The newly inferred event cluster, in turn, probabilisti-

cally predicts upcoming events that are possible and probable at that moment in time. As

discussed in Section 2.2, these predictions will depend on the end state of the most

recently integrated event, as well as on the full history of events observed before it (see

Neisser, 1976; Schmidt et al., 1978 for early discussion). Note that this type of prediction

is implicit: At any given time, the event cluster inferred inherently constrains the proba-

bility space of what can come next. This is entailed by the dynamic nature of the model.

When the next event is observed, the event cluster is updated again. The change that is

induced by each incoming event can be conceptualized as the change in the probability

distribution induced by this new event (the Kullback–Leibler divergence), and it can be

thought of as an implicit prediction error. The newly inferred event cluster, in turn,

implicitly predicts its next state, and another new event is observed. Thus, through itera-

tive cycles of implicit probabilistic prediction and updating, this dynamic probabilistic

generative model should incrementally infer the event cluster that is most likely to have

generated the full sequence of individual events observed.

4.1.2. Inferring the goals of other agents from event clusters
If we engaged the dynamic generative model described above as we watch the woman

making tea in her kitchen, we would be able to infer an event cluster that explains the

sequence of the events observed, based on our spatial and functional knowledge of how we

interact with our environment. However, this would not be sufficient to truly comprehend
what was going on—this cluster would look nothing like an event model. This is because, as

yet, our generative model has no access to any of our long-term schema-relevant knowledge:

There is nothing to link the event cluster that is being inferred to any of our prior knowledge

and experiences of making tea. Just as important, there is nothing yet to tell the model that

there are alternatives to making tea! Therefore, if we continue to watch the woman, and we

see her grab a sponge, despite this new event being unpredicted and producing a large implicit

prediction error (because, based on our knowledge of sponges, it would be perceived as rela-

tively dissimilar to the previous set of events), we would continue to infer one giant event

cluster. There is no way for us to use this prediction error in combination with our prior

knowledge about cleaning, to infer that we should start building a new event cluster.

The fundamental assumption that the model is currently missing is that agents produce

sequences of actions to satisfy their longer-term goal and that these goals can change:

The woman in the kitchen does not simply switch on the kettle because there is water

inside it, and because it affords the function of boiling this water; she presumably carries

out this action because she has the goal of making herself a cup of tea. It is this goal that

drives her to generate the entire sequence of events that we observe. Therefore, to truly

comprehend this action sequence (infer its underlying latent cause and explain the input),

we must be able to infer the agent’s goal (for early discussion, see Schmidt et al., 1978;

see also Baker, Saxe, & Tenenbaum, 2009; Dennett, 1987).

To accommodate this basic assumption, we need to add a third level to our generative

model where we represent our beliefs about the range of possible and probable goals that
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the woman might consider as she goes about her activities in the kitchen. Each of these

goals would be represented in an abstract form that would need to capture two further

assumptions about how goals drive agents to produce sequences of events.

The first assumption is that, to carry out the sequence of actions required to achieve

any given goal, other agents draw upon stored schema-based knowledge that is relevant

to that goal. For example, to achieve the goal, {Make self a cup of tea}, we assume that

the woman in the kitchen must draw upon her stored tea-relevant knowledge. Obviously,

as comprehenders, we do not have access to exactly the same body of knowledge as this

woman. However, we can associate each of her possible goals with a subset of our own

probabilistic knowledge that we believe is relevant to her. Given that we do not know

anything about this particular woman, this would reflect our assumptions about an “aver-

age” woman’s schema-relevant knowledge. The parameters of our generative model

would specify how each goal, represented at the third level of the generative hierarchy,

causes/generates a set of schema-relevant event clusters represented at the second level,

each with different likelihoods. For example, based on our assumptions about the average

tea drinker, the goal, {Woman makes self a cup of tea}, would generate clusters that

encode highly likely tea-relevant events (e.g., <Brew tea in hot water>), as well as less

likely tea-relevant events (e.g., <Pour milk into tea>). However, this goal would be very

unlikely to generate clusters that encode events like <Grab a sponge>.
The second assumption is that the sequence of individual events generated by any

given goal will come to an end; that is, we know that a goal’s representation is inherently

finite with an ending that is marked by an end state. For example, a possible end state of

the goal {Make self a cup of tea} might be [Tea consumed] (highly likely) or [Tea

steeped] (less likely), but it is unlikely to be [Water boiled]. Goal end states are usually

conceptualized as the desired future state of affairs that is associated with a goal’s fulfill-

ment (e.g., Jones & Davis, 1965). They are thought to be an inherent part of how goals

are represented, and, just like the end states of individual events (see Section 2.2), they

set preconditions over future goals (see discussion by Cooper, 2021, this issue). Our gen-

erative model would therefore need to specify, once again probabilistically, the range of

possible end states associated with each goal.

Together, these three levels are linked to form a hierarchical generative model. Infer-

ence proceeds at both the highest (third) and middle (second) levels of the model as each

incoming event becomes sequentially available to the lowest (first) level. At any given

time, the second level of the model infers the event cluster that is most likely to have

generated the sequence of individual events observed thus far—the current event model—
while the third level of the model infers the goal that is most likely to be generating the

event model inferred at the second level (see Fig. 1).

4.2. Hierarchical dynamic predictive coding

The description above focused on the basic structure of a three-level hierarchical gen-

erative model that describes our probabilistic assumptions about how visually observed

real-world events are produced by other agents. To understand how our brains might
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actually use this hierarchical generative model as an inference engine during real-time

event comprehension, we need an algorithm that can carry out (or approximate) iterative

belief updating by passing information from one level of the cortical hierarchy to another

in both a top-down and bottom-up fashion.

While there are several different algorithms that can, in principle, carry out or approxi-

mate Bayesian inference in the brain (Aitchison & Lengyel, 2017), the best known of

these is hierarchical predictive coding. This algorithm was first instantiated in a neural

network to simulate extra-classical receptive-field effects in the visual system (Rao &

Ballard, 1999; see also Lee & Mumford, 2003; Mumford, 1992; Spratling, 2008). It was

later expanded into a more general theory of how hierarchical probabilistic inference is

carried out across multiple domains of perception and cognition, and how information is

passed up and down the cortical hierarchy (Clark, 2013; Friston, 2005; see also Spratling,

2016b).

Predictive coding is not only generative in a theoretical sense; it is actively generative

(cf. Hinton, 2007; Hinton, Dayan, Frey, & Neal, 1995) — that is, within each two-level

generative model, information represented at the higher level (level 2) is actively
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Fig. 1. The structure of a three-level hierarchical generative model that represents a comprehender’s proba-

bilistic assumptions about how other agents produce sequences of real-world visual events. The highest level

of the hierarchy (level 3) represents the comprehender’s probabilistic beliefs about possible goals that could

be generating the observed set of events. Each goal is probabilistically associated with an end state, as well

as a range of possible and probable schema-relevant event clusters, which are represented at the middle level

of the hierarchy (level 2). The event model is a dynamically changing cluster, C, of linked events that repre-

sent the comprehender’s understanding of the full sequence of events observed thus far, and what she

believes will happen in the future. At any given time, this event model probabilistically generates the next

event in the sequence, En based on a function, f(E1:n�1), which is determined by the comprehender’s spatial

and functional knowledge of how agents interact with their environment (note that these probabilistic predic-

tions will also be influenced by schema-relevant information). These predicted upcoming events are repre-

sented at the lowest level of the hierarchy (level 1). For further explanation, see Section 4.1 of the

manuscript.
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propagated down, through feedback connections, to reconstruct activity at the lower level

(level 1) (Rao & Ballard, 1999). In dynamic predictive coding, as originally instantiated

by Rao and Ballard (1997) through the application of an extended Kalman filter (see also

Friston, 2005; Rao, 1999), the state at the higher level is assumed to change continuously

over time. It therefore continually generates implicit probabilistic predictions about its

future state, and it is these implicit predictions that are propagated down as reconcon-

structions to the lower level of the hierarchy, thereby changing the state of activity at the

lower level before the next input from the environment becomes available (top-down pre-
dictive pre-activation).

The reconstructed activity at the lower level (level 1) is subtracted from the state that

is induced when new environmental input actually appears, and only the difference in

activity (observed–predicted) is passed back up to the higher level (level 2) via feedfor-

ward connections. I will refer to the difference between the new bottom-up input and the

top-down reconstruction of input at level 1 as the first-level bottom-up prediction error.5

When this bottom-up prediction error reaches the higher level (level 2), it induces a

change in its state. The shift from the old to the new state is the implicit prediction error.
As each new input becomes available from the environment, this process is repeated until

the magnitude of the bottom-up prediction error is minimized. In this way, the algorithm

either approximates (Rao & Ballard, 1999) or, under certain assumptions, carries out

Bayesian inference (Friston, 2005; Spratling, 2016a).

In hierarchical predictive coding, exactly the same process proceeds at all levels of the

generative hierarchy. For example, representations at a still higher level (level 3) of the

hierarchical generative model are propagated down to level 2 where they generate their

own probabilistic reconstructions. The degree to which the state at level 2 is updated on

any given cycle of belief updating will therefore reflect a compromise between any pre-

activation it receives from level 3 and the bottom-up prediction error it receives from

level 1. Finally, the top-down reconstruction at level 2 is subtracted from the newly

inferred state at level 2. If this yields a difference, then the resulting second-level bottom-
up prediction error is, in turn, passed up to level 3 of the hierarchy to update beliefs over

the hypotheses that are generating the full set of inputs observed. Thus, because of how

each level is linked to the level above and the level below, information flows up and

down the hierarchy until error is minimized across the entire generative model. By mini-

mizing error, the model should settle on a state—an interpretation—that best explains the

full set of observed inputs.

4.3. Mapping computational principles on to cognitive representations and processes

The description of hierarchical predictive coding offered above is somewhat abstract. I

now consider how this algorithm would carry out inference across the three-level hierar-

chical generative model sketched out in Section 4, linking this to the representations, con-

structs, and cognitive mechanisms that are typically discussed in psychological models of

event comprehension.
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As discussed in Section 3.1, most psychological models of event comprehension appeal

to the idea that an ongoing interpretation—an event model—is represented in an active

state within working memory. Within this hierarchical generative framework, this active

state of working memory corresponds to the current state of activity at the second (mid-
dle) level of the three-level hierarchical generative model described in Section 4. The

event model itself is the dynamically evolving event cluster that is being inferred at any

given time. It reflects our understanding of what we have observed, what we are currently

observing, and what we believe that we are about to observe in a given event sequence.

For example, as we watch the woman in her kitchen, at a particular moment in time, our

event model might constitute some structured representation of what we understand about

“this woman in her kitchen making herself a cup of tea and currently opening the

fridge,” and it would also encode implicit probabilistic predictions about its future state

(the woman reaching for a range of possible items that can be kept in a fridge, as well as

other possible upcoming events). These implicit predictions reflect our beliefs about the

possible and probable events that we will next encounter, given our spatial knowledge

and the affordances of surrounding objects. Note that they correspond to the type of

implicit predictions that are instantiated by recurrent neural networks, which are com-

monly used to model both event comprehension (e.g., Butz, Bilkey, Humaidan, Knott, &

Otte, 2019; Elman & McRae, 2019; Franklin, Norman, Ranganath, Zacks, & Gershman,

2020; Hanson & Hanson, 1996; Rabovsky, Hansen, & McClelland, 2018; Reynolds,

Zacks, & Braver, 2007) and event production (e.g., Botvinick & Plaut, 2004; Cooper,

Ruh, & Mareschal, 2014).6

In addition, at any given time, the third level of the hierarchical generative model,

which represents our beliefs about the goals of other agents, is actively generating proba-

bilistic top-down predictions of event clusters at the second level of the hierarchy within

working memory. Recall that the hierarchical generative model is structured such that

each possible goal probabilistically generates a range of event clusters, each with differ-

ent likelihoods, and that, together, these event clusters correspond to the long-term

schema-relevant knowledge that is associated with that goal. The assumption here is that

this schema-relevant information is latent within long-term memory, but linked to goal

representations so that it can be proactively retrieved (activated within working memory)

as needed during comprehension. As a result, at any given time, the implicit predictions

generated by the event model represent the intersection between (a) the set of possible

and probable upcoming events, given our spatial knowledge and the affordances of sur-

rounding objects, and (b) the set of schema-relevant event clusters that have been acti-

vated/retrieved, based on our beliefs about the current goal.

In dynamic hierarchical predictive coding, these implicit predictions are actively propa-

gated down to the first level of the hierarchy, thereby probabilistically pre-activating rep-

resentations of upcoming single events—top-down predictive pre-activation (see

Kuperberg & Jaeger, 2016, Section 4). The degree of pre-activation will depend on the

predictive constraint of the current event model. For example, a weakly constraining

event model would generate widely dispersed weak pre-activation over multiple possible

upcoming event representations, whereas a highly constraining event model would
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generate strong and focused activity over one highly likely upcoming event representa-

tion. The main advantage of this type of top-down predictive pre-activation, over the type

of implicit prediction described above, is that it can give us even more of a head-start in

processing new input when it becomes available. So long as the structure of the genera-

tive model also reflects our own comprehension goals (see Section 5.6 for discussion),

and so long as probabilistic pre-activation is based on the correct event model, then new

inputs to the first level of the hierarchy, should, on average, be supported by this prior

pre-activation, and processing should proceed more accurately and efficiently than if we

did not pre-activate at all.

When a new event is observed at the first level of the hierarchy, the difference

between the activity that it induces and the activity that was predictively pre-activated

constitutes the first-level bottom-up prediction error induced by this new event. Note that

the use of the term “prediction error” here does not imply a “prediction violation” or “er-

ror” in the colloquial sense: The first-level prediction error produced by an incoming

event simply reflects the new information provided by observing this event—the informa-

tion that was not reconstructed before it was observed (see also footnote 5). The magni-

tude of the prediction error produced by the incoming event is proportional to the

likelihood of its prior pre-activation (see Brothers & Kuperberg, 2020), and it reflects the

amount of “work” required to initially retrieve/access this event representation. Neuro-

physiologically, the difficulty of retrieving this event information, and therefore the mag-

nitude of the first-level prediction error, is thought to be reflected by the amplitude of the

N400 ERP component: The more predictable the event, the smaller (less negative) the

N400 (see Kuperberg, 2016; Kuperberg et al., 2020 for discussion), although note that

the N400 produced in response to visual events has a more anterior scalp distribution and

a more extended time course than the N400 produced by single words during language

comprehension (e.g., Coderre et al., 2020; Cohn et al., 2012; Sitnikova et al., 2008; West

& Holcomb, 2002).7

When this unpredicted event information (the informational content of the bottom-up

prediction error) reaches the second level of the hierarchy, it will update the current event

model, inducing a shift in its state. The magnitude of this shift is the implicit prediction
error and corresponds to the “prediction error” that is referred to in some models of event

comprehension (e.g., Radvansky & Zacks, 2011; Reynolds et al., 2007; see also Rabovsky

et al., 2018). This may or may not be equal in magnitude to the first-level bottom-up pre-

diction error described above (see Kuperberg et al., 2020 for discussion).

To sum up, at any given time, working memory, represented at the second level of the

generative hierarchy, includes the current event model as well as its implicit probabilistic

predictions about its future state. These implicit predictions are determined by both our

spatial and functional knowledge about how we interact with our surroundings, as well as

the schema-relevant event clusters that have been proactively retrieved, based on our

beliefs about the current goal. These implicit predictions, in turn, lead to the probabilistic

top-down pre-activation of the next event in the sequence at the first level of the hierar-

chy, see Fig. 2.
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Having now described the computational principles of generative models and hierarchi-

cal predictive coding, we are now in a position to revisit the open questions outlined in

Section 3.4 and see how these principles can inform our understanding of the neurocogni-

tive mechanisms engaged in event comprehension. I turn to this in the next section.
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Fig. 2. The state of an actively generative three-level hierarchical model at time t, as we watch the tea-making

sequence. Activity at the middle (second) level of the generative hierarchy represents the active state of work-

ing memory where the current event model is being inferred. This event model is a dynamic representation

that reflects our understanding of the sequence of events that we have observed (a woman making tea in her

kitchen, who has just poured hot water into a cup, resulting in a cup of steeped tea), as well as our probabilis-

tic beliefs about what we are about to observe. At time t, these probabilistic beliefs reflect the intersection

between (a) the set of possible and probable upcoming actions, given that the woman’s hand is positioned near

the cup and the tea is freshly steeped, and (b) the set of schema-relevant event clusters that have been retrieved

from long-term memory, based on our higher-level beliefs about the woman’s overall goal. For example, a

strong belief that the woman’s overall goal is {Make self a cup of tea} may lead to the top-down activation of

schema-relevant clusters that encode sequences such as “Drinking tea” (highly likely), “Adding milk,” or

“Adding sugar” (less likely). These implict probabilistic predictions within working memory result in the top-

down probabilistic pre-activation of the next event in the sequence at the lowest level of the hierarchy (level

1), for example, <Woman picks up cup> (highly likely), <Woman opens fridge>, or <Woman opens sugar

bowl> (less likely). At time t + 1, the next event is observed, <Woman opens the fridge>. The resulting bot-

tom-up prediction error would be passed up to the middle level of the hierarchy (working memory), leading to

an update of the event model (not depicted). For further explanation, see Section 4.3 of the manuscript.
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5. Engaging hierarchical generative models to comprehend sequences of events

5.1. Homing in on an event model

The first question we asked was, when we first start to observe a sequence of events,

how do we build a new event model, and how do we know what schema-relevant clusters

to retrieve from long-term memory? To see how this framework can address this ques-

tion, let us return to the point when we first start watching the woman in her kitchen.

At this stage, we will be uncertain about the woman’s overall goal. Within a proba-

bilistic framework, our uncertainty about the underlying latent cause of our observations

is known as expected uncertainty (or estimation uncertainty; Dayan & Yu, 2003; Yu &

Dayan, 2005). A basic principle of Bayesian inference is that the greater our prior

expected uncertainty, the more we update our beliefs upon encountering new unpredicted

input (expected surprise). Therefore, towards the beginning of the event sequence, the

rate at which we update our beliefs will be high, enabling us to home in rapidly on the

goal that is generating the event sequence we observe.

Within a predictive coding framework, our high initial uncertainty about the woman’s

goal means that top-down pre-activation to the lower levels of the generative hierarchy

will be minimal. Therefore, when we encounter the first event of the sequence (<Woman

fills kettle with water>), it will produce a large first-level bottom-up prediction error (its

information has not been pre-activated). This unpredicted event information is then

passed up to the second level of the hierarchy (working memory), where, based on our

knowledge about the woman’s position in space and the functional affordances of a ket-

tle, it implicitly probabilistically predicts its future state. In this way, as each incoming

event becomes available in real time, through cycles of probabilistic prediction and belief

updating (as described in Section 4.1.1), we start to build a new event model.

At any given time, this event model, in turn, provides new information that is passed

up to the third level of the hierarchy, which represents our beliefs about the woman’s

goals. Although on any given cycle of belief updating at the second level, the amount of

information that is passed up to the third level is relatively small, as we observe more

events, we will converge with increasing certainty on this goal. This will, in turn, lead to

the generation of increasingly strong top-down pre-activation over tea-relevant event clus-

ters, corresponding to the proactive retrieval of this information from long-term memory

into working memory at the second level of the hierarchy. These active schema-relevant

clusters will further constrain the implicit probabilistic predictions that the event model

generates about its future state at any given time. For example, when we see the woman

open the fridge, the prior activation of tea-relevant event clusters within working memory

will increase the probability that we will next see her get milk (rather than, say, orange

juice) from the fridge.

The increasingly strong implicit predictions generated by the event model within work-

ing memory will, in turn, generate increasingly strong top-down pre-activation over

upcoming individual event representations at the first level of the hierarchy. As a result,
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as each new consistent incoming event is observed at the first level, it becomes progres-

sively easier to access/retrieve it (i.e., its processing is facilitated), producing a progres-

sively smaller first-level prediction error. Evidence for this type of progressive facilitation

in processing incoming events comes from a study showing that, during sequential visual

event comprehension, the amplitude of the N400 produced by the first event is large and

becomes progressively smaller as the sequence unfolds (Cohn et al., 2012).

5.2. Reactively detecting event boundaries by tracking prediction error

The second question we asked was, how large must a prediction error be to infer the

presence of an event boundary? We also asked why and how the detection of a large pre-

diction error would lead us to disengage from our current event model (and associated

schema-relevant clusters) and begin retrieving new schema-relevant clusters from long-

term memory in order to build a new event model.

To illustrate the answer to these questions, imagine that we have observed almost all

the events in the tea-making sequence, and we see the woman approach her freshly

brewed cup of tea. At this point, we are nearly certain that her overall goal, represented

at the third level of the hierarchy, remains {Make self a cup of tea}. Our current event

model, represented within working memory at the second level of the hierarchy, strongly

predicts its upcoming state, which, in turn, generates strong top-down pre-activation over

the most likely upcoming event at the first level—<Woman picks up cup>.
First imagine that instead of seeing the woman pick up the cup, we see her open the

fridge. This will induce a large bottom-up prediction error at the first level of the hierar-

chy, and a large implicit prediction error at the second level (a large shift as we update

our current event model with this unpredicted event). Despite this, we do not infer that

there has been any change in the woman’s overall goal, and we do not disengage from

our current event model. Now imagine that instead of seeing the woman pick up the cup

as predicted, we see her grab a sponge. This time we do infer that there has been a

change in her overall goal, and we do disengage from the current event model. At a com-

putational level, the key difference between these scenarios is that, in the first case, the

newly inferred event model falls within the range of likely event clusters that can be gen-

erated by the {Make self a cup of tea} goal. Therefore, after shifting to the unpredicted

event, <Woman opens fridge>, the event model that is being inferred at the second level

of the generative hierarchy can still be explained by this overall goal. In contrast, in the

second case, after integrating <Woman grabs sponge>, the full event model cannot be

explained, and this leads to a redistribution of our beliefs about the woman’s underlying

goal at the third level of the generative hierarchy.

This exemplifies a fundamental principle of Bayesian inference known as the Bayesian

Ockham’s razor (MacKay, 2003, Chapter 28): Although we try to explain incoming data

as simply as possible, if we encounter new information that is very unlikely given these

prior assumptions, we will always infer (retrieve or learn) the hypothesis that assigns the

highest likelihood to the data (see also Shin & DuBrow, 2021, this issue for a discussion

in relation to classical rational models of categorization, cf. Anderson, 1991 and Sanborn,
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Griffiths, & Navarro, 2010). In the present case, this is a {Woman cleans} goal, which

better explains <Woman grabs sponge> than the originally assigned {Woman makes self

a cup of tea} goal. The Bayesian Ockham’s razor is instantiated by a class of nonpara-

metric Bayesian models known as Dirichlet process infinite mixture models. In recent

work, Franklin et al. (2020) show that this type of model is indeed able to infer event

boundaries in response to highly unlikely events that produce a large implicit prediction

error—a large shift from an old to a new state in a recurrent neural network.

More generally, a large prediction error that leads us to infer that the statistical struc-

ture of the environment has fundamentally changed is known as unexpected surprise
(Dayan & Yu, 2003; Yu & Dayan, 2005). Unexpected surprise is associated with a reac-
tive re-allocation of attention (Yu & Dayan, 2005; see also Feldman & Friston, 2010). It

can lead to a number of different consequences that depend on the structure of the

agent’s generative model.8 In the situation described above, the unexpected surprise

induced by the unexpected <Woman grabs sponge> event forces us to “go back in time”

and retroactively re-evaluate the belief that we had about the woman’s goal before we

observed the unexpected event. Moreover, the large redistribution of belief over goals at

the highest level of the hierarchical generative model (large Bayesian surprise, see Baldi

& Itti, 2010) also leads to a retroactive redistribution of beliefs at lower levels of the gen-

erative hierarchy to ensure that the input is explained across the entire model (Pearl,

1987).

Within a dynamic predictive coding framework, this type of retroactive redistribution

of beliefs at the highest level of the generative hierarchy is triggered by a large second-
level bottom-up prediction error, and the retroactive redistribution of activity at lower

levels of the hierarchy is driven by retroactive top-down feedback activity (see Friston,

2005; Lee & Mumford, 2003). Prior to observing the highly unexpected event, <Woman

grabs sponge>, our high prior certainty about the woman’s goal had led to the proactive

retrieval of a full range of tea-relevant event clusters within working memory at the sec-

ond level of the hierarchy. However, when <Woman grabs sponge> was incorporated into

the event model, the newly inferred event model failed to match any of these active clus-

ters. In other words, it conflicted with the contents of working memory, producing a sec-

ond-level prediction error, which, when passed up to the third level, led to the

redistribution of belief over goals. The resulting retroactive top-down feedback to the sec-

ond level of the hierarchy resulted in (a) a suppression of the current event model and its

associated tea-relevant event clusters—a disengagement from the current event model and

its associated schema-relevant clusters within working memory, and (b) an enhancement
of activity over cleaning-relevant clusters—the top-down retroactive retrieval of new

schema-relevant information from long-term memory. This, in turn, set the stage for

building a new event model within working memory.

Evidence for this type of late retroactive processing comes from ERP studies showing

that, in addition to the N400 component, unexpected events can sometimes also evoke a

late frontally distributed positive-going ERP waveform that is visible on the scalp surface

between 600 and 1,000 ms. As discussed earlier, the N400 is evoked by any semantically

unexpected input. Within this hierarchical generative framework, its amplitude reflects

274 G. R. Kuperberg / Topics in Cognitive Science 13 (2021)



the magnitude of the first-level bottom-up prediction error that is produced by incoming

information about a new event that has not already been pre-activated. In contrast, a late
frontal positivity is only produced when new unpredicted input triggers a late, high-level

re-interpretation of the prior context (see Brothers, Wlotko, Warnke, & Kuperberg, 2020;

Kuperberg et al., 2020, for a detailed discussion within this generative framework). Dur-

ing language comprehension, this can occur when, following a highly constraining con-

text, an unexpected incoming word leads us to revise our earlier high-certainty beliefs

about the current discourse model, analogous to revising our high-certainty beliefs about

the woman’s tea-making goal after seeing her grab a sponge (e.g., Brothers, Wlotko,

et al., 2020; DeLong, Quante, & Kutas, 2014; Federmeier, Wlotko, De Ochoa-Dewald, &

Kutas, 2007; Kuperberg et al., 2020; Van Petten & Luka, 2012). Following low constraint

contexts, a similar late frontal positivity is also elicited by highly informative words that

also trigger the retrieval of new schema-relevant clusters from long-term memory that

lead to a retroactive interpretation of the prior context (e.g., Brothers, Greene, & Kuper-

berg, 2020; Chow, Lau, Wang, & Phillips, 2018; Freunberger & Roehm, 2016).9

5.3. Proactively detecting event boundaries by tracking uncertainty

The third question we posed in Section 3.4 was whether it is possible to infer an event

boundary in the absence of a very large prediction error. In their contribution to this Spe-

cial Issue, Baldwin and Kosie (2021, this issue) discuss evidence that, as we watch

sequential images of everyday events, our gaze times ramp up before we encounter

unpredicted events at points in the sequence when we are most uncertain about the

upcoming input. This suggests that under some circumstances, we predict upcoming event

boundaries (Hard, Meyer, & Baldwin, 2019; Hard et al., 2011; Kosie & Baldwin, 2019).

If this is the case, then how do we detect this rise in uncertainty, and are we able to

exploit it to disengage from our current event model before we observe the upcoming

unpredicted event?

Again, this probabilistic framework provides a principled answer to these questions.

This is because, within this framework, we continually track our expected uncertainty
about the woman’s goals, represented at the highest level of the generative model. As dis-

cussed in Section 4.1.2, each goal is represented with its own end state. Therefore, after
watching the entire tea-making sequence and seeing the woman finally drink her well-

earned cup of tea, our expected uncertainty about her next goal will rapidly rise.10 As a

result, when we see the next unpredicted event, we will be prepared to shift our high-

level beliefs so that we can rapidly home in on the new goal that will drive her to pro-

duce the next sequence of events we observe (see Section 5.1).

Importantly, because our expected uncertainty about the woman’s upcoming goal starts

to rise before the next unexpected event is actually observed, this uncertainty-driven

detection of event boundaries is inherently proactive. It has been proposed that our ability

to track expected uncertainty over time provides a normative account of proactive atten-
tion (Dayan, Kakade, & Montague, 2000; Yu & Dayan, 2005; see also Pearce & Hall,
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1980): The more uncertain we are about an upcoming input in the perceptual stream, the

more attention we allocate to the environment just before we encounter this new input.

This proactive allocation of attention associated with expected uncertainty offers sev-

eral advantages over the reactive re-allocation of attention and reactive processing associ-

ated with unexpected surprise described above. First, within a predictive coding

framework, the rapid rise in uncertainty as we reach a particular goal’s end state will lead

to a reduction in top-down activation at the second level of the hierarchy; that is, it will

lead us to proactively disengage from the current event model and its associated schema-

relevant clusters before we actually encounter the next unpredicted event. This means that

when we do encounter the unpredicted event at the beginning of a new sequence, we do

not need to devote unnecessary resources to going back in time and retroactively sup-

pressing our event model and schema-relevant clusters within working memory, as dis-

cussed above.

Second, the pre-allocation of attention to our environment as we reach a goal end state

offers us another opportunity: We can actively look for clues in our environment to tell

us what schema-relevant clusters to retrieve next—a process that Baldwin and Kosie

(2021, this issue) refer to as information optimization. For example, as we watch the

woman take her last sips of tea, we might follow her gaze toward a sponge. This would

allow us to proactively narrow in on a space of possible cleaning-related goals. Computa-

tionally, this is known as active sensing (Friston, Adams, Perrinet, & Breakspear, 2012;

Friston et al., 2015; Yang, Wolpert, & Lengyel, 2016). In a system with limited

resources, like the brain, active sensing provides us with an optimal way of gathering

information from the environment that is deemed most likely to be useful in the future

(Chater, Crocker, & Pickering, 1998; MacKay, 1992; Nelson, 2005).

5.4. Monitoring the dynamics of the broader environment: From unexpected to expected
surprise

To sum up, this probabilistic hierarchical generative framework offers two mechanisms

by which we can infer boundaries as visual events unfold sequentially in real time. It also

offers insights into how we are able to use this information to disengage from our current

event model and build a new event model within working memory.

First, as proposed by event segmentation theory, we can track the magnitude of the

implicit prediction error that is produced when each incoming event shifts the state of the

current event model—the difference between the prior and the new state of the event

model (see Reynolds et al., 2007). Importantly, this probabilistic framework offers a prin-

cipled explanation for how large this prediction error must be to infer an event boundary

and switch to a new event model: The incoming event must produce unexpected surprise
—it must be unlikely enough to override our prior certainty of the goal (latent cause) that

we believe is generating the current event model (see also Franklin et al., 2020; Gersh-

man, Radulescu, Norman, & Niv, 2014). Within a predictive coding framework, the

incoming event must conflict with information that is already active within working mem-

ory, thereby producing a second-level bottom-up prediction error, which drives a late top-
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down retroactive disengagement from the current event model and retrieval of new

schema-relevant event clusters.

The second mechanism by which we can infer an event boundary and switch to a new

event model is to continually track our uncertainty about other agents’ goals. As we reach

a goal’s end state, the rapid rise in expected uncertainty about the next goal will lead us

to proactively disengage from the current event model and schema-relevant clusters

within working memory (reduced top-down activation from the third level of the hierar-

chy). Moreover, when we do encounter the next unpredicted event (expected surprise),

our prior uncertainty will drive us to rapidly and incrementally home in on a new event

model, by incrementally retrieving new schema-relevant clusters and inferring the new

goal that is driving the new sequence of events.

These two mechanisms are distinct. The first is driven by a large prediction error (un-

expected surprise) and is reactive in nature, entailing a re-allocation of attention. The

second is driven by uncertainty and is proactive in nature, allowing us to pre-allocate
attention to environmental inputs, and prepare for the upcoming expected surprise at the

event boundary. As discussed above, of these two mechanisms, the latter is clearly prefer-

able: It is far more efficient to proactively disengage from the current event model in

response to an expected rise in uncertainty than to retroactively disengage and play “catch

up” following unexpected surprise). One way in which we can reduce the chance of

unexpected surprise, and increase the chance of expected surprise, is to monitor the

broader dynamics of our environment and adapt our “mode of processing” accordingly.

To illustrate this, let us return to the moment of unexpected surprise when we saw the

woman in the kitchen grab a sponge, just when we had predicted that she would pick up

her cup and sip her tea. As we now watch her clean the fridge, we start to build a new

{Woman cleans the fridge} event model. However, she then briefly returns to her cup of

tea (once it has cooled) to take the first sip. Even though our {Woman makes self a cup

of tea} event model, and its associated tea-relevant event clusters, are no longer active in

working memory, we should still be able to rapidly retrieve this information from long-

term memory, enabling us to incorporate <Woman sips tea> into that event model. This

is because we have a prior for retrieving recently used clusters, which allows us to easily

switch between event models during comprehension (see Collins & Frank, 2013; see also

Ericsson & Kintsch, 1995 for a discussion of the role of “working long-term memory” in

comprehension).

Now imagine that as we continue to watch, we see the woman switch between tea

drinking, phone answering, and other tasks. Although this would lead to repeated unex-

pected surprise (see Yu & Dayan, 2005), by tracking the broader speed at which the envi-

ronment is changing (tracking its volatility; see Behrens, Woolrch, Walton, & Rushworth,

2007; Nassar, Wilson, Heasly, & Gold, 2010; Nassar et al., 2012; see O’Reilly, 2013 for

discussion), we should be able to turn this unexpected surprise into expected surprise—
that is, by inferring that the environment is highly volatile, our expected uncertainty about

the woman’s goal at any given time should increase. As a result, we will attend more

proactively to our surroundings (we may even actively search for potential switch cues—
active sensing). Within a predictive coding framework, this will, in turn, lead to reduced
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top-down pre-activation of specific upcoming events (see Brothers, Dave, Hoversten,

Traxler, & Swaab, 2019; Brothers, Swaab, & Traxler, 2017 for consistent evidence). This

framework therefore provides a principled explanation for how we are able to transition

from a more reactive to a more proactive mode of processing (see Braver, 2012), effi-

ciently allocating resources so that our mechanism of comprehension is calibrated to the

broader dynamics of the input.

5.5. Expanding the generative hierarchy

To illustrate how the principles of hierarchical generative models and predictive coding

can inform our understanding of the neurocognitive mechanisms of event comprehension,

I have appealed to a relatively simple three-level hierarchy in which goals directly gener-

ate event clusters, which, in turn, generate single events that unfold sequentially over

time. However, during event comprehension, we will sometimes need to represent the

goals of other agents that stretch over shorter or longer time spans. For example, as we

see the woman in the kitchen opening the fridge, we may be able to infer that her

shorter-term subgoal is {Add milk to tea}. And as we continue to watch her go about her

routine, we may infer that her longer-term goal is {Make breakfast}.

In the literature on action planning, goals at successively longer time scales are often

represented at successively higher levels of hierarchical structure (e.g., Barker & Wright,

1954; Bower et al., 1979; Cooper & Shallice, 2000; Knoblock, 1992; Miller, Galanter, &

Pribram, 1960; Newell & Simon, 1972; Norman & Shallice, 1986; Schmidt, 1976). Fig. 3

gives an example of this type of hierarchical action plan associated with the goal, {Make

self a cup of tea}. In this hierarchical structure, representations at lower levels are embed-
ded within representations at higher levels and it is only possible to transition to higher

levels of the hierarchy when the end states at lower levels have been satisfied (see Zacks

& Tversky, 2001 for discussion).11 Note also how the structure of “goals” and “subgoals”

at higher levels echoes the structure of individual “events” represented at the first level:

Even though each represents information at a different time scale, each has its own end

state (indeed, as noted at the outset of this review, a psycholinguist may well describe the

goal, {Woman makes self a cup of tea}, as a single “event”).

Fig. 3 shows the woman’s tea-making action plan “after the fact.” Of course, when we

first start watching her activities, we have no way of knowing what this plan will be.

However, by further expanding the probabilistic hierarchical generative model sketched

out above, and using this expanded model to track both the magnitude of prediction error

and our expected uncertainty over the woman’s goals and subgoals at multiple time
scales, we should, in principle, be able to use this model to “reverse engineer” this entire

action plan as it unfolds in real time.

To see how this would work, let us add an additional level to the original three-level

hierarchical generative model, sketched out in Section 4.1, just below the highest level

that represents goals. This new level would represent the set of possible and probable

subgoals that we believe might be generated by each goal. Each subgoal would generate

a range of shorter event clusters, each with different likelihoods. In addition, just like the
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main goal and each individual event, each subgoal would be represented with its own

end state.

This arrangement results in a tree-like hierarchical structure in which any given sub-

goal would “see” only a subset of event clusters, and the individual events below it.

However, the goal at the highest level of the hierarchy would see everything below it.

This means that during real-time comprehension, as we progress along a sequence of

events and edge closer and closer toward inferring the overarching goal, each subgoal

would receive increasingly more top-down pre-activation from this goal. This would offer

additional top-down constraints that would further facilitate processing at the levels

below. Moreover, the expected rises in uncertainty at the end states of each subgoal

would offer us additional flexibility to transition to new subgoals in response to unex-

pected inputs, with these new subgoals still being informed by top-down activation from

the higher-level goal.

To illustrate these points, let us return to the moment in the tea-making sequence when

we see that the woman’s tea is steeped. Because we are so far along in the sequence, our

high certainty over the {Make self a cup of tea} goal will have led to the proactive top-

down retrieval of tea-relevant event clusters within working memory at the second level

of the hierarchy. However, because [Tea steeped] corresponds to the end state of the
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Fig. 3. A schematic of a hierarchical action plan that another agent might use to achieve the goal, {Make

self a cup of tea}. Information at successively longer time spans is represented at successively higher levels

of the hierarchy. Note that this action plan could, in principle, be expanded to include higher hierarchical

levels that would represent longer-term goals, for example, {Make breakfast}, and lower levels that would

represent shorter-scale events. For example, <Put teabag in cup> would subsume <Reach for tea canister>,
<Open tea canister>, <Reach inside canister>, <Take teabag out of canister>, <Hold hand with teabag over

cup>, <Drop teabag in cup> (see also footnote 11).
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previous subgoal {Brew tea}, a small rise in expected uncertainty about the next subgoal

will lead us to disengage slightly from generating strong top-down predictions over single

events at the first level of the hierarchy. Therefore, when we encounter the unexpected

event, <Open fridge>, our surprise will be slightly more expected and we will be more

ready to flexibly update our beliefs and shift to a new subgoal. Moreover, the inference

of this new subgoal will be informed by the strong activation of tea-relevant event clus-

ters within working memory—there are only so many subgoals that are both tea-relevant

and match <Open fridge>. Therefore, we will be able to infer, with fairly high certainty,

that the woman’s new subgoal is {Add milk to tea}. This inference will, in turn, lead us

to predictively pre-activate the most likely upcoming event in the sequence, <Get milk>.
More generally, the principles illustrated in this simple example offer insights into

how dynamic inference would proceed if the hierarchy was expanded still further. Pro-

gressively higher levels of the generative model would have increasingly larger (longer)

temporal “receptive fields.” Lower levels of the hierarchy would process information that

changes at faster rates, allowing for rapid and flexible proactive transitions across bound-

aries at end states (from event to event, and from subgoal to subgoal). Higher levels of

the hierarchy would process information that changes more slowly, both because it takes

longer to infer new information, and because the information that has been inferred at

these higher levels becomes increasingly more resistant to change. Therefore, at succes-

sively higher levels of the generative hierarchy, the magnitude of any prediction error

and the degree of expected uncertainty required to transition across boundaries would

become progressively larger. As a result, during comprehension, unpredicted incoming

events will usually be explained at lower rather than higher levels. However, these lower

levels will still receive the benefit of top-down pre-activation that is based on whatever

has already been inferred at higher levels. Finally, the alignment of certain end states

across multiple hierarchical levels means that there are critical points in the information

stream where bottom-up information has a short-cut to the very top of the hierarchy,

offering us the benefits of a small world network (cf. Watts & Strogatz, 1998; see Min-

sky, 1975 for early discussion) so that we can proactively attend to inputs in the environ-

ment that direct us to whole new branches of discovery.

This perspective highlights the key role of end states—the points of maximal uncer-

tainty at each level of the hierarchy—in proactively directing attention and allowing for

flexible shifts between events, subgoals, and goals. This close link between attention and

goal end states seems to be fundamental. As discussed by Elsner and Adam (2021, this

issue), dynamic eye tracking studies show that, by the end of their first year of life,

infants actively attend to the end states of simple familiar events (e.g., Cannon & Wood-

ward, 2012; Falck-Ytter, Gredeback, & von Hofsten, 2006; Kanakogi & Itakura, 2011).

They suggest that what may be critical for this type of proactive attention is that the

infant believes that the end state of an event corresponds to the end state of another

agent’s goal (Adam & Elsner, 2018; Falck-Ytter et al., 2006; cf. Gergely & Csibra,

2003). This raises the possibility that during development, uncertainty-based tracking of

other agents’ goals may play a role in building the rich stores of event knowledge that
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we rely upon as adults, and that this privileged role of end states in simple events may

be rooted in rational Bayesian principles.

5.6. Flexible generative models: The goals of the comprehender

While the type of expanded hierarchical generative model described above can, in

principle, allow us to invert the entire action plan of other agents (Schmidt et al., 1978;

see Cooper, 2021, this issue; Knott & Takac, 2021, this issue), it is important to recog-

nize that, in practice, this type of “deep deconstruction” of the action plan is often not

necessary, and that, ultimately, the structure of the generative models that we engage dur-

ing comprehension will be determined by our own comprehension goals.

It is well established that our mode and depth of comprehension vary considerably,

depending on our current “standards of coherence” (cf. van den Broek, Bohne-Gettler,

Kendeou, Carlson, & White, 2011). These standards will depend on many factors, includ-

ing our internal motivation, other tasks we are carrying out, the constraints of our broader

environment, and any instructions that we have been given (for discussion in relation to

reading comprehension, see Graesser, Singer, & Trabasso, 1994; van den Broek et al.,

2011; see Baldwin & Kosie, 2021, this issue for discussion in relation to visual event

comprehension). Given that there are metabolic costs of passing information both up and

down the cortical hierarchy (Attwell & Laughlin, 2001; Laughlin, de Ruyter van Steve-

ninck, & Anderson, 1998), it would be wasteful to invest resources in pre-activating

upcoming information that is irrelevant to our current comprehension goals (see Kuper-

berg & Jaeger, 2016, p. 13 for discussion; see also Norris, 2006, p. 330). Instead, from a

“bounded” rational perspective (see Griffiths, Lieder, & Goodman, 2015; Howes, Lewis,

& Vera, 2009; Simon, 1956), it would make more sense to engage a generative model

whose depth (the number of hierarchical levels represented) directly reflects the depth of

understanding we need at any given time (see Brothers, Wlotko, et al., 2020, for a recent

example and discussion; see also Friston et al., 2015, for a more general discussion). For

example, if as we watch the woman in her kitchen, our aim is to simply get a general gist

of what is going on, then we might engage a shallow generative hierarchy, inferring

supergoals like {Make breakfast}, but not more specific goals or subgoals. If, on the other

hand, we were being instructed in the art of making tea, then we would be more likely to

engage a deeper generative hierarchy that would allow us to infer each individual goal

and subgoal (see Hanson & Hirst, 1989, for evidence that our mode of comprehension

can influence the hierarchical structure of the information that we encode and store within

long-term memory).

Finally, it is important to note that there may be times when we are not interested in

the goals of other agents at all, and we approach comprehension with our own set of

orthogonal goals and interests. For example, if I came across the woman in the kitchen

on YouTube in the midst of a search for ideas about remodeling my own kitchen, then I

might gaze intently at my computer, engaged in deep “comprehension.” However, at the

highest level of my generative model, instead of representing my beliefs about the

woman’s possible goals, I would instead represent my beliefs about countertop surfaces
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and kitchen cabinets. I might additionally be able to ensure that relevant information

reaches the top of this generative hierarchy by selectively reducing the variance over rele-

vant perceptual channels at lower levels, thereby increasing the gain on inputs of interest

(increasing the magnitude of the bottom-up prediction error that they produce, see Feld-

man & Friston, 2010). Thus, instead of my attention being proactively captured by my

uncertainty in the woman’s goals, or retroactively captured by unexpected surprise, it

would be (retroactively) captured by inputs that show wood or granite!
This particular example may be too extreme. Human beings have evolved to be inter-

ested in other human beings, and so it may be challenging for us to disengage entirely

from attending to the goals of other agents. However, it highlights the fact that event

comprehension is not always equivalent to event production “in reverse.” Instead, the

generative models that we engage must be highly dynamic and flexible, allowing us to

infer others’ goals, but only when this information is relevant to achieving our own goals,

as comprehenders.

6. From event comprehension to event production and learning

The premise of the hierarchical generative framework of comprehension described

above is that (a) we engage a body of probabilistic knowledge that describes our general-

izable assumptions of how and why other agents produce events—a hierarchical genera-
tive model, and (b) we use this model as an inference engine to interpret these events. A

basic assumption of this framework is that event comprehension draws upon the same

core event representations that we draw upon to carry out sequential action, as discussed

in Section 2 (a similar position is taken by Cooper, 2021, this issue; Knott & Takac,

2021, this issue).

Some developmental work supporting this assumption is discussed by Elsner and

Adam (2021, this issue). As noted above, young infants actively attend to the end states

of simple familiar events (e.g., Cannon & Woodward, 2012; Falck-Ytter et al., 2006;

Kanakogi & Itakura, 2011). However, to engage in this type of proactive processing,

these infants must have already developed the motor skills required to actually carry out

the actions depicted (e.g., Ambrosini et al., 2013; Kanakogi & Itakura, 2011). For exam-

ple, if an infant has not yet acquired a precision grasp, then while watching a hand pre-

cisely grasp a small object, her eyes will track the grasping motion instead of skipping

ahead to predict the object (Ambrosini et al., 2013).

6.1. Generative models and the production of sequential action

In addition to simply drawing upon the same underlying event representations as dur-

ing event comprehension, the production of sequential action may also rely on assembling

probabilistic generative models to actively predict upcoming information, just as during

comprehension (see Cooper, 2021, this issue; Pezzulo, Rigoli, & Friston, 2018; see also

Pickering & Garrod, 2013, for discussion in relation to language production). As
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emphasized throughout this review, sequential action necessarily requires us to interact

continuously with the environment. Therefore, as in comprehension, predicting upcoming

information from the environment before it becomes available from the bottom-up input

should increase the speed and efficiency of processing.

A critical role of internal generative models in predicting the consequences of action

has long been recognized in the study of simple motor control, where these models are

referred to as forward models. To effectively carry out even a simple action, such as

picking up a cup of hot tea, the motor plan must receive continuous feedback from the

perceptual input (e.g., the shape of the cup and the precise temperature of the tea). Wait-

ing for all this perceptual information to become available from the bottom-up input

would take too long for it to provide feedback in time to influence the motor plan during

real-time action. By actively generating predictions of the perceptual consequence of the

motor plan, forward models buy us critical time: Upcoming perceptual information is

pre-activated, which means that when it becomes available from the bottom-up input, we

only need to compute the difference between what we predicted and what we perceive

(just as discussed in Section 4.2 in relation to predictive coding). This “prediction error”

can then be used to dynamically update the motor plan “on the fly,” ensuring that the

movement is smooth and coordinated.

As discussed by Cooper in this issue, similar logic holds at higher levels of the action

hierarchy. By engaging a generative model to probabilistically pre-activate the end states

of the goals, subgoals, and individual events that we plan to carry out, we gain a head-

start. For example, if I am in my kitchen with the subgoal of adding some milk to my tea

(because, yes, I do take tea with milk!), then the anticipation of the end state, [Milk in

tea], will not only trigger me to carry out the next event, <Open fridge> (cf. Hommel

et al., 2001; James, 1890/1981; Lotze, 1852; Prinz, 1987); it may also lead to the pre-ac-

tivation of the end state of the following event—[Milk in hand]. As a result, as I open

the fridge, I know exactly where to look for the milk.

Evidence for this type of proactive prediction during the production of sequential

action comes from studies showing that our eyes fixate on objects in our environment just

before we actually need them during naturalistic goal-directed tasks (Flanagan & Johans-

son, 2003; Hayhoe & Ballard, 2005), including the task of making tea (see study by

Land, Mennie, & Rusted, 1999!). Moreover, within this actively generative framework,

when we are very certain about a future goal, not only do we pre-activate the visuo-spa-

tial features of anticipated objects associated with this goal; we also pre-activate the per-

ceptual consequences of our planned actions. For example, as I open the fridge to get the

milk for my tea, I would not only pre-activate a representation of the milk in its expected

position inside the fridge, but also a representation of my hand actually grasping the milk

(see Belardinelli, Lohmann, Farne, & Butz, 2018; Belardinelli, Stepper, & Butz, 2016, for

consistent evidence). Therefore, as the fridge opens, not only will my eyes skip ahead to

find the milk in its rightful position, but when I come to execute the next action (<Get
milk>), I need only to compute the difference between what I predicted and what I per-

ceive and use this prediction error to dynamically update my motor plan as it is executed

in real time.
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More speculatively, beyond playing a role in predicting upcoming inputs, the genera-

tive models we engage during the production of sequential action may also function to

track uncertainty in our own goals and subgoals, allowing us to “infer” parts of our own

action plans based on the environmental input. This idea may at first seem counterintu-

itive, at least from the perspective of comprehension: If producers already have access to

their own goals and subgoals, then why would they need to engage a probabilistic genera-

tive model to infer them? However, there may be times when we approach action with a

broad goal, but without a full, precise hierarchical plan of exactly what subgoals and

events we will execute in what order (see Miller et al., 1960). By tracking our expected

certainty about our own goals and subgoals, we would be able to opportunistically exploit

the environment to “fill in the gaps,” enabling us to achieve our overall objectives (cf.

Patalano & Seifert, 1997). For example, I may walk into my kitchen with the overall goal

of making myself a cup of tea. However, I am unlikely to have planned exactly when I’ll

add the milk. Rather, this will depend on what I see. If I notice that a carton of milk is

already on the table, I will probably pour some milk into my cup before I boil the kettle.

In this case, it is the environmental input itself (the milk on the table), in combination

with my prior expected uncertainty over my own subgoals, that leads me to infer the sub-

goal <Add milk to tea> at that particular time. This newly inferred subgoal, in turn, pre-

dictively generates the next events in my action plan.12

More generally, tracking expected certainty of our own goals may also allow us to cal-

ibrate our “mode of action” to these overarching goals. For example, there are times

when I walk into my kitchen, very certain of my goal of making myself a cup of tea. In

these cases, if I reach inside the fridge to get the milk and notice some unpredicted mess,

I will “downweight” the resulting prediction error and refrain from switching to a new

goal. There are other times, however, when I might wander into my kitchen without any

strong intention of making tea. I’ll see the kettle, start to boil the water, open the fridge

to get some milk, and notice the same unpredicted mess. In these situations, I’ll more

easily update my original high uncertainty tea-making goal and retrieve new event clus-

ters that are relevant to a new goal. Thus, generative models may play a role in ensuring

that our actions are calibrated not only to our environment but also to our own intentions,

thereby minimizing the chances of errors in production—pre-emptive error monitoring.
To sum up, by allowing for active prediction and updating based on the certaining of

goals and subgoals, generative models in sequential action may play a similar role to gen-

erative models in event comprehension, thereby ensuring that processing is fast, accurate,

and flexible. It is, however, also important to recognize that the generative models we

engage in comprehension and production will differ in important ways. First, comprehen-

ders will almost always have more uncertainty about the goals of producers than produc-

ers have about their own goals. Second, as discussed in Section 5.6, the generative

models that we engage during comprehension will only represent possible goals and sub-

goals of other agents to the degree that these representations align with our own goals.

Third, during comprehension, we must be able to represent schema-relevant knowledge

that is different from the knowledge that we would employ if we, ourselves, were fulfill-

ing a particular goal during production. For example, I would not dream of putting sugar
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in my own tea, but if I am watching my father making himself a cup of tea, it would be

helpful to represent {Add sugar} as a high certainty subgoal that drives the events I

observe. The fact that we know that other agents draw upon overlapping but distinct

sources of schema-relevant knowledge is, of course, crucial for being able to work

together collaboratively toward common goals (Tanenhaus, Chambers, & Hanna, 2004),

and for communicating with each other through language (see Brown-Schmidt, Yoon, &

Ryskin, 2015, for discussion). In these situations, both comprehenders and producers

must, together, try to reduce uncertainty and minimize prediction error across each
other’s generative models (Jaeger & Ferreira, 2013).

6.2. Generative models and learning

Although we will never have full access to each others’ brains, there is one important

way in which we can bring our generative models closer together—we can adapt our

models by implicitly learning from our environment at the same time as we comprehend

and act upon it. There is growing evidence that learning is very closely intertwined with

both comprehension and production, relying on the same computational algorithms (e.g.,

Chang, Dell, & Bock, 2006; Dell & Chang, 2014; Elman, 1990; Elman & McRae, 2019;

see McRae et al., 2021, this issue for discussion).

Within a probabilistic generative framework, learning, just like comprehension and

production, entails using Bayes’ Rule to update our beliefs. The key difference is that

instead of updating our beliefs about representations that we have already learned (infer-

ence), we must update our beliefs about the parameters of the generative model itself,

which takes place over a longer time scale. To understand this, consider once again the

structure of the three-level hierarchical generative model sketched out in Section 4. In

describing the parameters that link the third to the second level of the hierarchy (linking

goals to schema-relevant clusters), I suggested that, given our lack of knowledge about

the woman in the kitchen, these parameters would reflect our beliefs about an “average”

woman’s schema-relevant knowledge. However, we know that the woman in the kitchen

is not simply an “average woman”; she, just like every other person on the planet, draws

upon her own unique schema-relevant knowledge, including her specific tea-making/

drinking habits and preferences. Therefore, as comprehenders, we will always have some

uncertainty about these parameters, and it is this expected uncertainty that drives us to

update our beliefs about these parameters, in parallel with updating our beliefs about the

representations of the model itself. Therefore, after watching the woman make herself a

few cups of tea, we should be able to implicitly adapt our generative model so that its

parameters more accurately describe the specific tea-drinking habits of this particular

woman (see Kleinschmidt & Jaeger, 2015, for a generative model of processing and

adaptation at a low level of language processing).

Of course, adapting our generative model in this way is just the first step; there is no

point in learning that the woman takes her tea with milk if we forget this vital piece of

information after a night’s sleep! We must be able to encode and consolidate this infor-

mation within long-term memory. As discussed by several contributors to this Special
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Issue (Bilkey & Jensen, 2021, this issue; Shin & DuBrow, 2021, this issue), there is evi-

dence that hippocampal activity at event boundaries plays a role in consolidating informa-

tion for later recall (see Baldassano et al., 2017; Ben-Yakov & Dudai, 2011).

From a computational perspective, a fundamental question is how we are able to gen-
eralize from the information that we learn so that we know what schema-relevant clusters

are most appropriate to retrieve in future situations. For example, if having learned that

the woman in the kitchen takes her tea with milk, when we meet her for tea at another

time and place (say, at the Ritz), how do we know whether to offer her milk? Or, sup-

pose that we learn that she is English; do we take our newly encoded woman-in-kitchen-

makes-tea-with-milk generative model as the starting point for generalizing about other

English tea drinkers? In all these cases, we need to be able to infer what kinds of prior

experiences are most relevant for the present situation (see Kleinschmidt & Jaeger, 2015,

for a detailed discussion of relevant issues). As discussed by Shin and DuBrow (2021,

this issue), the Dirichlet process infinite mixture models described above provide insights

into how we might be able to learn and extract abstract features that are common to dif-

ferent event clusters, allowing for this type of generalization. These types of models can

also explain specific patterns of memory and decision biases (see Franklin et al., 2020).

Taken together, this work underlines the idea that, within this probabilistic generative

framework, comprehension, production, learning, and memory are intimately related.

This, of course, makes sense. Comprehending, producing, and learning from events are

not separate endeavors: All three processes must work alongside one another as we per-

ceive and act upon our environment. By engaging in probabilistic prediction, and tracking

both prediction error and uncertainty of our prior beliefs, hierarchical generative models

may provide the computational engine that allows us to both exploit and learn from the

rich statistical structure of the world around us.
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Notes

1. Thematic roles are neither purely syntactic nor purely semantic. Rather, they lie

squarely at the interface between structure and meaning (Levin, 1993), providing a
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way to combine semantics and syntax to describe or understand “who does what to

whom.”

2. As discussed by Unal, Ji, and Papafragou (2021, this issue), bounded events are

distinguished from unbounded events in which the ending is not explicitly coded in

the linguistic expression. For example, while the end state, [Tea consumed], is part

of the conceptual structure of the event that is conveyed by the sentence, “The

woman swallowed the tea,” the linguistic expression, “The woman drinks some

tea” does not specify the end of the tea drinking. In the real world, however, events

usually have an ending—we know that the woman will not drink tea forever.

3. This type of active high-level representation within working memory has been

given different names depending on the modality of input. For example, in the

reading comprehension literature, it is referred to as the situation model (e.g., Van
Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998); in the literature on spoken lan-

guage comprehension, it is often referred to as the message that is being communi-

cated by the producer (e.g., Bock, 1987; Bock & Levelt, 1994; Dell & Brown,

1991), or the speech act when the producer’s communicative intention is being

emphasized (e.g., Levinson, 2013). Even more broadly, it has been referred to as a

mental model (Johnson-Laird, 1983), or simply as a contextual representation (e.g.,

Kuperberg & Jaeger, 2016).

4. Throughout this review, I use “we” and other terms associated with agency (e.g.,

“hypothesis” and “belief updating”) to describe probabilistic computations as well

as neurocognitive mechanisms, adopting Dennett’s Intentional stance (Dennett,

1987; see also McGregor, 2017). The relevant processes and neural mechanisms

are, however, assumed to be unconscious and implicit.

5. In most models of predictive coding, the information that is passed up from lower

to higher levels of the cortical hierarchy is the bottom-up information that has not
been predicted (positive prediction error) rather than information that has been

predicted but not actually observed (negative prediction error, which, in the cortex,

is biologically implausible, see Keller & Mrsic-Flogel, 2018; Rao & Ballard,

1999). In network models, positive prediction error can be calculated by comput-

ing the element-wise difference between information carried by the bottom-up

input and information in the top-down reconstruction at each unit and taking the

positive values (e.g., Ballard & Jehee, 2012; Keller & Mrsic-Flogel, 2018), or it

can be computed through element-wise division (dividing the input by the predic-

tion at each unit, see Spratling, 2008; Spratling, De Meyer, & Kompass, 2009). It

is usually assumed that this prediction error is calculated by “error units” that are

distinct from “state units” at each level of the generative hierarchy.

6. As discussed by McRae, Brown, and Elman (2021, this issue), recurrent neural net-

works are, by definition, dynamic models that represent states that continuously

change over time (see Elman, 1990; Jordan, 1986). They have a complex high-di-

mensional state space and a highly nonlinear transition function. They do not carry

out full Bayesian inference. However, they can be viewed as generative and proba-

bilistic, functioning to implicitly estimate the probability distribution of an
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upcoming observation in a sequence, given previous observations (e.g., Chung

et al., 2015; Rabovsky, Hansen, & McClelland, 2018).

7. Consistent with this view of the amplitude of the N400 reflecting the amount of

unpredicted information associated with a new input (the magnitude of the first-

level bottom-up prediction error), a plausible incoming event that is unpredicted

because it follows a non-constraining prior context produces just as large an N400

as a plausible event that is unpredicted because it violates the constraints of a prior

context (Kutas & Hillyard, 1984; Federmeier, Wlotko, De Ochoa-Dewald, & Kutas,

2007; Kuperberg, Brothers, & Wlotko, 2020).

8. If the agent does not represent a non-stationary environment, then the detection of

unexpected surprise will lead to an overwriting of the original generative model

(e.g., Dayan & Yu, 2003), corresponding to the so-called catastrophic inference in

connectionist models (McCloskey & Cohen, 1989). If the agent does represent a

non-stationary environment, but the incoming event cannot be explained by any

existing latent causes (e.g., there are no existing goals or schema-relevant clusters

that can explain the input), then the agent will learn a new latent cause to explain

the input. This new learning of latent causes can also be modeled by the infinite

mixture models described above, providing insights into how, during development,

we are able to build our vast body of schema-based knowledge (see Franklin, Nor-

man, Ranganath, Zacks, & Gershman, 2020). In adults, upon encountering an

unpredictable event that cannot be explained by the current latent cause, it is usu-

ally more parsimonious to switch to a previously learned latent cause (i.e., retrieve
schema-relevant event clusters from long-term memory) than to learn a new latent

cause (learn a new cluster of events). However, even in adulthood, highly unex-

pected surprise may trigger new learning if we encounter highly implausible/impos-

sible events that cannot be explained by existing goals/schema stored within long-

term memory (e.g., if, instead of seeing the woman in the kitchen pick up the cup

to drink her tea, we see her try to snort the tea through her nose, see Sitnikova,

Holcomb, Kiyonaga & Kuperberg, 2008 and footnote 9).

9. This late frontal positivity can be contrasted with another late positivity with a pos-
terior scalp distribution, otherwise known as the P600. This late posterior positiv-
ity/P600 is produced by events that cannot initially be explained by existing goals/

schema and are therefore initially interpreted as being highly implausible/impossi-

ble (in language comprehension, e.g., Kuperberg, 2007; Kuperberg, Brothers, &

Wlotko, 2020; Shetreet, Alexander, Romoli, Chierchia, & Kuperberg, 2019; in

visual event comprehension, e.g., Cohn, Jackendoff, Holcomb, & Kuperberg, 2014;

Sitnikova, Holcomb, Kiyonaga, & Kuperberg, 2008). This type of highly unex-

pected surprise is thought to trigger a general “orientation” response (Nieuwenhuis,

2011; Nieuwenhuis, Aston-Jones, & Cohen, 2005; Yu & Dayan, 2005), which may

be reflected by the well-known P300 ERP component (Donchin & Coles, 1988) to

which the late posterior positivity/P600 is thought to be functionally related (Coul-

son, King, & Kutas, 1998; Osterhout, Kim, & Kuperberg, 2012; Sassenhagen &

Fiebach, 2019; Sassenhagen, Schlesewsky, & Bornkessel-Schlesewsky, 2014). This,
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in turn, can lead to a number of downstream effects, including second-pass

attempts to check that the input was perceived correctly the first time around (re-

analysis, see van de Meerendonk, Kolk, Chwilla, & Vissers, 2009), as well as

learning new event clusters (see footnote 8).

10. As noted in Section 4.1.1, goal end states are also likely to be represented proba-

bilistically. For example, we may not be certain whether the end state of the

woman’s {Make self a cup of tea} goal is [Take one sip of tea], with a more

gradual transition to another goal, or whether she will take her time drinking the

whole cup of tea before she starts a new action sequence. Moreover, although to

my mind, this goal implies that the woman will drink the tea once she has made

it, this may be unclear to others (e.g., to one of the reviewers of this paper!), and
so these observers might hold some degree of belief that the end state is [Tea

steeped], leading to a rise in expected uncertainty earlier in the sequence.

11. In principle, it should be possible to recursively “unfold” the entire action hierar-

chy until we reach the very lowest level that represents the shortest time scale of

an event—an “event primitive” (see Miller, Galanter, & Pribram, 1960, for early

discussion). In their contribution to this Special Issue, Knott and Takac (2021, this

issue) suggest that this primitive is a short-lived deictic routine (cf. Ballard, Hay-

hoe, Pook, & Rao, 1997), and liken the recursive unrolling of an action hierarchy

to the way that syntactic trees can be recursively unfolded to reveal a primitive

transitive structure.

12. This perspective links to the literature on model-based reinforcement learning:

instead of conceptualizing goal-relevant decision-making as finding the policy that

maximizes the magnitude of expected reward, it is conceptualized as maximizing

the probability of a potential action-outcome-reward sequence (“planning as infer-

ence,” see Botvinick & Toussaint, 2012; Solway & Botvinick, 2012).
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