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A B S T R A C T

When semantic information is activated by a context prior to new bottom-up input (i.e. when a word is predicted),
semantic processing of that incoming word is typically facilitated, attenuating the amplitude of the N400 event
related potential (ERP) – a direct neural measure of semantic processing. N400 modulation is observed even when
the context is a single semantically related “prime” word. This so-called “N400 semantic priming effect” is sensitive
to the probability of encountering a related prime-target pair within an experimental block, suggesting that par-
ticipants may be adapting the strength of their predictions to the predictive validity of their broader experimental
environment. We formalize this adaptation using a Bayesian learning model that estimates and updates the
probability of encountering a related versus an unrelated prime-target pair on each successive trial. We found that
our model’s trial-by-trial estimates of target word probability accounted for significant variance in trial-by-trial
N400 amplitude. These findings suggest that Bayesian principles contribute to how comprehenders adapt their
semantic predictions to the statistical structure of their broader environment, with implications for the functional
significance of the N400 component and the predictive nature of language processing.

1. Introduction

It has long been established that more predictable words are processed
faster than less predictable words (e.g. Ehrlich & Rayner, 1981; Fischler &
Bloom, 1979; see Staub, 2015 for a recent review). Rather than being all-
or-nothing or strategic in nature, these effects of contextual predictability
are graded, probabilistic and implicit (Luke & Christianson, 2016; Smith &
Levy, 2013; see Kuperberg & Jaeger, 2016 for a review). Probabilistic
prediction can aid language processing by alleviating the resource bot-
tleneck that could otherwise occur at word onset (because some of the
“work” of comprehension can be accomplished ahead of time, given the
information provided in the context). Such benefits, however, require that
prediction is based on probabilistic knowledge that approximates the
statistical structure of the input. This presents a challenge for commu-
nication in the real world where our linguistic and non-linguistic en-
vironments often change. Each person we talk to and every book we read
has its own unique set of syntactic and semantic preferences. Thus, in
order for language comprehension to remain efficient, we must be able to
adapt to these different environments so that our predictions continue to
mirror their statistical structures. In the present study, we explore the close

relationship between probabilistic prediction and adaptation in the brain
by modeling a classic effect of adaptation on lexico-semantic processing:
the influence of the predictive validity of the experimental environment on
the N400 semantic priming effect.

The fundamental link between prediction and adaptation has been
widely discussed in cognitive science, dating back to early models of an-
imal learning (Pearce & Hall, 1980; Rescorla &Wagner, 1972). One way of
formalizing this link is within a probabilistic generative framework
(Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010; see Perfors,
Tenenbaum, Griffiths, & Xu, 2011, for an excellent introduction). Here, the
agent’s overarching goal is to infer an underlying latent cause that best
explains the statistics of its environmental input. As the agent receives
more input (evidence), she is able to incrementally update her probabil-
istic beliefs using Bayes’ rule — a process known as belief updating.

In the domain of language, this type of probabilistic framework has
most commonly been used to model incremental syntactic parsing (e.g.
Levy, 2008), as well as to describe sentence comprehension more
generally (Kuperberg, 2016; Kuperberg & Jaeger, 2016). In addition, it
has recently been used to explain how we adapt to the broader set of
statistical contingencies that are associated with, and define, any given
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situational context (e.g. Fine, Qian, Jaeger, & Jacobs, 2010; Jaeger &
Snider, 2013; Kleinschmidt & Jaeger, 2015; Myslin & Levy, 2016),
where it is referred to as “rational” adaptation (see Anderson, 1990).1

Neural indices of online processing have shown similar effects of
predictability as behavioral measures, suggesting that probabilistic pre-
diction is instantiated in the brain during language comprehension. A
well-established effect of contextual probability on language processing
is on the N400 — an event-related potential (ERP) that peaks between
300 and 500ms following the onset of an incoming word, and that is
thought to reflect the ease of semantically processing that word
(Federmeier, 2007; Kutas & Federmeier, 2011; Kutas & Hillyard, 1984).
The N400 is highly sensitive to the semantic probability of incoming
words (DeLong, Urbach, & Kutas, 2005; Wlotko & Federmeier, 2012): its
amplitude is less negative (“smaller”) to words that are semantically
more (versus less) predictable. This is the case regardless of whether the
context is a sentence stem (e.g. Kutas & Hillyard, 1984), a larger dis-
course or text (e.g. Van Berkum, Zwitserlood, Hagoort, & Brown, 2003),
or a single ‘prime’ word (Bentin, McCarthy, & Wood, 1985; Rugg, 1985).

There is also evidence that the amplitude of the N400 adapts to the
statistics of its broader environment. A classic illustration of this is the
effect of relatedness proportion on N400 modulation during a semantic
priming paradigm (Brown, Hagoort, & Chwilla, 2000; Holcomb, 1988;
Lau, Holcomb, & Kuperberg, 2013). Behaviorally, the Relatedness
Proportion effect on semantic priming was first described in the late
1970s by Tweedy, Lapinski, and Schvaneveldt (1977), and it has since
been reported in numerous studies (reviewed by Neely, 1991). It refers
to the finding that the semantic priming effect is larger in blocks that
contain a higher (versus a lower) proportion of related (versus un-
related) prime-target pairs. The effect has long been linked to predictive
mechanisms (Hutchison, 2007; Keefe & Neely, 1990; Neely & Keefe,
1989; Neely, Keefe, & Ross, 1989): in higher relatedness proportion
blocks, participants are more likely to use the prime to generate
stronger lexico-semantic predictions of the target.

Following these behavioral studies, as well as previous ERP experi-
ments (Brown et al., 2000; Holcomb, 1988), we recently carried out an
ERP study examining the effect of Relatedness Proportion on the N400
semantic priming effect (Lau et al., 2013). We measured ERPs as the same
participants viewed the same core set of prime-target pairs, which were
counterbalanced across two blocks. These blocks differed in the proportion
of semantically related and unrelated word-pairs. In Block 1 (the lower
relatedness proportion block), only 10% of the prime-target pairs were
semantically related, and in Block 2 (the higher relatedness proportion
block), 50% of the prime-target pairs were semantically related. Short
breaks were given within both blocks as well as between blocks, and
participants were not explicitly told that there would be any change be-
tween the blocks. We showed that the magnitude of the N400 semantic
priming effect was significantly larger in Block 2 (the higher relatedness
proportion block) than in Block 1 (the lower relatedness proportion block).
In follow-up studies using MEG and fMRI, we also showed that the higher
relatedness proportion block was associated with enhanced modulation of
neuroanatomical regions sensitive to both lexico-semantic processing and
learning (Lau, Weber, Gramfort, Hamalainen, & Kuperberg, 2016; Weber,
Lau, Stillerman & Kuperberg, 2016).

These findings provide strong evidence that participants were able to
implicitly adapt to the changes in the predictive validity across the two
blocks (see Tweedy & Lapinski, 1981, for an early discussion of adaptation
in relation to this effect). What remains unclear, however, is the time
course and the computational principles underlying such adaptation in

relation to prediction. In this investigation, we sought to address this
question by building a computational model based on principles of ra-
tional (Bayesian) adaptation. This model computed and updated the
probability of encountering target words on individual trials throughout
Block 2 (the higher proportion block), with the assumption that partici-
pants had already seen Block 1 (the lower proportion block). We then use
linear mixed effects regression to ask whether the trial-by-trial outputs of
our computational model in each participant could explain changes in the
trial-by-trial modulation of the actual N400 data collected in each parti-
cipant throughout Block 2 in the dataset collected by Lau et al. (2013).

In the remainder of this paper, we describe the theory and mathe-
matical computation of our model. We then give a brief overview of the
experimental methods previously described in detail by Lau et al.
(2013). We evaluate our model’s trial-by-trial output in each partici-
pant against the empirical trial-by-trial ERP data in each participant,
and we then discuss our findings in the context of the broader literature
on prediction, adaptation, and language processing.

2. Theory

2.1. Development of a rational probabilistic model of trial-by-trial
adaptation

Our rational adaptor model considers how a comprehender makes
probabilistic predictions during a semantic priming paradigm as she
adapts to a higher relatedness proportion block (Block 2), following a
lower relatedness proportion block (Block 1). By probabilistic prediction,
we simply refer to the existence of a probability distribution over
possible target words after seeing a prime on each trial.

To compute these probabilistic predictions on each trial, we assume
that the agent is potentially able to draw upon two different types of long-
term stored knowledge: her knowledge about semantic associations be-
tween words, and her knowledge about the frequency of words when en-
countered in isolation. These types of knowledge are, of course, not the
only factors that influence the amplitude of the N400 amplitude; rather
they are the two factors that we assume are most relevant to understanding
how the N400 is modulated as the agent adapts during a semantic priming
paradigm. We assume that, on each trial, the degree to which the agent
uses each of these sources of long-term knowledge, in combination with the
prime, to generate probabilistic predictions about the target, is weighted by
the degree to which she believes that she will encounter a related or an
unrelated target. These latter beliefs are updated, based on Bayes’ rule, on
successive trials as she progresses through Block 2. As a result, the model
outputs a final estimate of the probability of encountering a target word on
each individual trial in each participant within Block 2. These final prob-
abilities are then negative log transformed to yield the information-theo-
retical measure surprisal on each trial in each participant.

This final model output on each trial is then tested against human
trial-by-trial N400 data using linear mixed effects regression models.
Below we step through the principles of the computational model and
justify our assumptions at a conceptual level. Computational details are
given in the following Calculation section.

2.2. Probabilistic predictions based on Forward Association Strength,
Frequency and beliefs about trial type

In order to carry out a semantic priming task, we assume that partici-
pants can draw upon their stored knowledge about semantic associations
between individual words to generate predictions about a target on the basis
of a prime. To index this semantic associative knowledge, we used the
Forward Association Strength (FAS) of the prime, as estimated using the
University of South Florida Free Association Norms (Nelson, McEvoy, &
Schreiber, 2004). These norms are derived from responses of a large number
of participants who are given a “prime” word as a prompt and asked to
produce the first associated word that comes to mind. The FAS is the pro-
portion of participants who produced a particular target given the prime

1 In the present study, we use the term “rational” descriptively to refer to the
use of Bayes’ rule to update beliefs. As in any other Bayesian model, we can
infer rationality only with respect to our assumptions about participants’ priors,
likelihoods and hypothesis spaces (see Tauber, Navarro, Perfors & Steyvers,
2017 for discussion). We return to reconsidering these assumptions in inter-
preting our data in the Discussion.
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(see discussion of interpretation by Nelson, McEvoy, & Dennis, 2000), and it
thus yields a probabilistic estimate of how likely a given target is produced
having seen a given prime. Previous studies have shown that the FAS of a
prime monotonically predicts the amplitude of the N400 produced by target
words in semantic priming studies (Luka & Van Petten, 2014).

We also assume that, on any given trial, participants do not only base
their predictions about a target on its prime’s FAS, but that they also take
into account their belief about whether they will encounter a related or an
unrelated target following a prime (that is, whether the trial will be a
related or an unrelated word-pair). This equates to their belief about
whether the prime’s FAS will be an informative predictor of the target. To
take two extremes, if a participant believes with 100% probability that she
is about to encounter a related word-pair, then she will be 100% confident
that the prime will predict the target, and so she will base her probabilistic
predictions about the target on the prime’s FAS. If, on the other hand, the
participant believes with 100% probability that she will encounter an
unrelated word-pair, then she might ignore the prime (and the FAS of any
potential target word given the prime) altogether. In this case, her pre-
dictions about the target will be based only on her stored distributional
knowledge about the probability of seeing a target word in an average or
random context. This is identical to word frequency: high frequency words
are more probable than low frequency words, given an average context
(Norris, 2006). Word frequency is also known to influence the magnitude
of the N400 evoked by words presented in isolation, with more frequent
(more probable) words eliciting a smaller N400 amplitude, with a loga-
rithmic relationship (reviewed by Laszlo & Federmeier, 2014).

In a semantic priming paradigm, in which related and unrelated word-
pair trials are presented in random order, the participant never knows in
advance whether or not a target will be related or unrelated to the prime
(whether the prime will be informative). However, at any point in the
experiment, she may have some probabilistic estimate of how likely she
will encounter a related versus an unrelated word-pair trial. Our model
assumes that she uses this estimate as a blending factor that weights the
relative influence of FAS versus word frequency knowledge to estimate the
final probability of encountering any particular target. For example, if she
is 100% confident that an upcoming the prime-target pair will be related,
then, after encountering the prime word, “salt”, she would estimate the
probability of encountering “pepper” to be 0.7 – its FAS. If, however, given
the wider contextual environment, she believes that the probability of
encountering a related prime-target pair is only 0.1, then she might esti-
mate the probability of encountering “pepper” following “salt” to be 0.07
(0.1*0.7) plus some very small probability of encountering it simply by
chance as an unrelated word, as determined by its frequency. (Note that
the probability of encountering “pepper” by chance as an unrelated target
will be orders of magnitude lower than the probability of encountering it
as a related target in this example.)

Importantly, we assume that the participant’s estimate of the prob-
ability of encountering a related versus an unrelated word-pair is not
static, but rather that it can change across the course of an experiment, as
will her confidence in this estimate. A rational adapter framework pro-
vides a way to formalize this learning process. At any given point in the
experiment, the participant has an initial prior belief about the probability
of encountering a related versus an unrelated prime-target pair, with some
degree of confidence in this belief. We assume that, at the very beginning
of Block 2, this prior belief is based on the relatedness proportion within
Block 1. Then, after encountering each prime-target pair within Block 2,
the participant updates her belief about the relatedness proportion, using
Bayes’ rule, with the information learned from that trial. This new pos-
terior distribution is then used to inform her belief about whether, on the
next trial, she will encounter a target that is related or an unrelated to the
prime. In this way, her beliefs about encountering a related versus an
unrelated trial adapt incrementally over the course of the Block 2.

This dynamically changing belief about trial type (related or un-
related) then weights the relative influence of FAS and word frequency,
so that, for each trial in Block 2, the model computes a final estimate of
the probability of encountering the target word. Finally, this raw

probability is log-transformed using the formula -log2[probability],
which converts it into the information theoretic measure surprisal
(Shannon &Weaver, 1949). We chose to carry out this final log transform
on the basis of some empirical evidence that surprisal may be a better
predictor than raw probability of behavioral measures of language pro-
cessing difficulty, particularly at low estimates of probability (Hale,
2001; Levy, 2008; Smith & Levy, 2013). In the ERP literature, there is
also some evidence that surprisal predicts the amplitude of the N400
(Frank, Otten, Galli, & Vigliocco, 2015; Frank & Willems, 2017), al-
though it is unclear whether it is a better predictor than raw probability
(see analysis by Yan, Kuperberg & Jaeger, 2017, of data shared by
Nieuwland et al., 2018, as well as response by Nieuwland et al., 2018).

Finally, we took the trial-by-trial output values yielded by our ra-
tional adaptor model in each participant, and we used linear mixed
effects regression to ask whether these values accounted for trial-by-
trial changes in the amplitude of the N400 evoked by target words
measured over the course of Block 2 in each participant.

3. Calculation

3.1. Experimental design

The experiment by Lau et al. (2013) crossed Relatedness (semanti-
cally related versus semantically unrelated word-pairs) and Relatedness
Proportion (higher relatedness proportion versus lower relatedness pro-
portion block). The related word-pairs had an FAS of 0.5 or higher (mean
FAS: 0.65) as estimated using the University of South Florida Free As-
sociation Norms (Nelson et al., 2004), and the unrelated word-pairs were
created by randomly redistributing the primes across the target items and
checking to confirm that this did not accidentally result in any associated
pairs. The Relatedness Proportion manipulation was achieved by adding
different numbers of related or unrelated filler word-pairs to the two
blocks. In the lower relatedness proportion block (Block 1 for all parti-
cipants), 10% of the word-pairs (40/400) were related, and in the higher
relatedness proportion block (Block 2), 50% of the word-pairs (200/400)
were related. A core set of 40 controlled and counterbalanced target
items was rotated across each of the four conditions, counterbalanced
such that no participant saw the same prime or target word twice. Order
of related and unrelated trials were randomized individually for each
participant, i.e. each participant viewed trials in a different order.

The principles described in the Theory section above led to the
development of a Rational Adapter model.

The whole model takes the form:

µ p

µ p

Model output log [ (word|prime)

(1 ) (word|average context)]
2=

+

where µ is a point estimate of the probability with which a rational
adapter expects a related trial at that point in time.

3.2. Estimating and updating the probability of receiving a related versus an
unrelated prime-target pair

To describe a participant’s belief about the probability of seeing a
related versus an unrelated prime-target pair, we assumed a beta-bi-
nomial model over expected trial types. Throughout this paper, we
frequently use the parameterization of the beta distribution in terms of
a mean µ and a precision ν.2 At any point in the experiment, the

2 This precision parameter is also known as the concentration parameter of
the beta distribution. In this paper, we chose to use the term precision because
this is the term that is most used in the neuroscience literature on predictive
processing (see Clark, 2013, for a review). In a Gaussian distribution, precision is
the reciprocal of variance. Intuitively, it refers to the narrowness of the dis-
tribution. In terms of the more common pseudocount parameterization, µ = α/
(α+ β) and ν= α+ β.
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expectation µ of this distribution is used to estimate the probability
with which a participant expects to receive a related trial. To set a prior
on participants’ beliefs, we assumed that participants entered Block 2
believing that the parameters of the experiment would be the same as in
Block 1, with a 10% chance of receiving a related trial, hence µ = 0.1.

In addition to setting an initial value for the mean parameter, µ (i.e.
participants’ beliefs about the probability of seeing a related versus an
unrelated prime-target pair at the beginning of Block 2), we also needed
to set an initial value for the precision parameter, ν (participants’
confidence in this belief; as discussed below, this effectively determines
how quickly participants adapt to the new experimental environment).
This precision parameter ν can be thought of as the “sample size” of the
prior, or the weight given to the prior observations in pseudocounts. For
example, if ν=20, then participants give the same weight to 20 trials
of new data as to their prior beliefs (see Fig. 1 for a depiction of how
different values of ν influence the rate of adaptation). As a best-guess
approximation, we set ν=50 at the beginning of Block 2. This value
was chosen to be non-trivially different from 0 (assuming that partici-
pants did retain some expectations from Block 1) but much less than
400 (the total number of trials observed in Block 1).3

With µ = 0.1 and ν=50, the beta prior at the beginning of Block 2
can alternatively be expressed in the pseudocount parameterization as
beta(5, 45), i.e. 5 pseudocounts of related trials and 45 of unrelated
trials. After each new prime-target pair in Block 2, this beta distribution
is updated through Bayes’ rule. Thus, µ incrementally changes after
each trial. For example, after encountering 5 related and 5 unrelated
prime-target pairs in Block 2, a participant’s beliefs would be modeled
as beta(10, 50). In the present experiment, as evidence accumulates,
participants’ certainty about the probability of encountering a related
trial (µ) increases on average, and the rate of change across trials for µ
decreases on average. Given the prior we chose and the statistics of
Block 2, the estimated probability of encountering a related trial begins
at µ = 0.1, and it asymptotes to µ = 0.5.

3.3. A mixture model to estimate the specific probability of encountering a
given target following a given prime for each trial in Block 2

At each point in the experiment, we used a mixture model to esti-
mate the final probability of encountering the specific target word
given the prime and the agent’s beliefs about the statistical structure of
the environment. The mixture has three inputs: (a) the expectation of
encountering a related target, µ, (b) the Forward Association Strength
(FAS) from the prime (Nelson et al., 2004), and (c) target frequency,
estimated from the SUBTLEX corpus (Brysbaert & New, 2009) and
converted into a proportion of the corpus total in order to yield the
same units as FAS (probability).

Just after encountering each prime, the probability of the target is
computed as the weighted sum of its probability as a related target
(FAS) and its probability as an unrelated target (frequency), weighted
by the expectation of encountering a related target, µ:

p µ µ(word) FAS (1 ) Frequency= +

Finally, we log-transform this final estimate of raw word probability
( plog [ (word)]2 ) to convert it into the information theoretic measure
surprisal.

We compute this value individually for all 80 critical targets in
Block 2 for each participant, taking into account each participant’s

idiosyncratic history of related and unrelated trials seen up until that
point in the experiment.

4. Methods

4.1. Participants and ERP data collection

Details about participants and ERP data collection have been pre-
viously described in detail by Lau et al. (2013), and are summarized
below.

Participants were all right-handed native speakers of American
English recruited from Tufts University. All gave written informed con-
sent to participate. Data were originally collected from 33 participants
(19 women; mean age=20.5 years) and two were omitted due to arti-
facts. All participants saw the lower relatedness proportion block first
(Block 1), followed by the higher relatedness proportion block (Block 2).
To ensure that participants processed the words semantically while at the
same time not drawing their explicit attention to semantic relationships
between primes and targets, they were instructed to press a button as
quickly as possible when they saw a name of an animal. In each block,
eighty of the unrelated filler word-pairs included an animal word. Within
each block, participants were given short breaks after every 100 trials
such that each block was divided into four runs. A similar break was
given in between the two blocks. Participants were not explicitly told
that there would be any differences between any of the runs.

Stimuli were presented on a computer monitor in yellow 20-point
uppercase Arial font on a black background. The prime was visible for
500ms, followed by 100ms of blank screen (total SOA 600ms). The
target was then presented for 900ms, followed by 100ms of blank
screen. EEG data were collected from twenty-nine tin electrodes, held in
place on the scalp by an elastic cap, in a modified 10–20 configuration
(Electro-Cap International, Inc., Eaton, OH). The EEG signal was re-
ferenced online to the left mastoid, amplified by an Isolated Bioelectric
Amplifier System Model HandW-32/BA (SA Instrumentation Co., San
Diego, CA) with a bandpass of 0.01–40 Hz, and digitized at a 200 Hz
sampling rate.

4.2. Preprocessing and extraction of individual trial ERP data

The EEG signal was time-locked to target words and segmented.
Trials with ocular and muscular artifact were removed as described by
Lau et al. (2013). A 100-ms pre-stimulus baseline was subtracted from
all waveforms prior to statistical analysis.

Fig. 1. Sample beliefs μ (probability of a related trial) over the course of Block 2
of the experiment at different values of precision parameter ν. Higher precision
(i.e. more certainty in prior beliefs) leads to slower adaptation to the new en-
vironment.

3 To prevent inflation of the type I error rate due to experimenter degrees of
freedom, we conducted all our hypothesis tests using this plausible a priori
value of ν, rather than allowing the selection of the value to be influenced by
the process of analysis. After the relevant hypothesis tests had been completed,
we then empirically derived the optimal prior for this particular experiment to
empirically derive the apparent rate of adaptation in this experimental setting,
see Results, Finding the optimal prior certainty.

N. Delaney-Busch, et al. Cognition 187 (2019) 10–20

13



Lau et al. (2013) reported the results of analyses that averaged the
N400 over related and unrelated targets and compared these averages
between Block 1 and Block 2. For the purposes of the present study, we
extracted the single trial ERP data collected during Block 2.

In each of the 32 participants, we extracted the N400 component
evoked by each of the 80 targets per participant in Block 2 — the 40
related and 40 unrelated targets that were counterbalanced across
conditions and across the two blocks, as described above.4 The N400
was operationalized as the averaged voltage between 300 and 500ms
evoked by each target, averaged across three parietal channels (CP1,
CP2, and Pz). These were the channels where the block-level N400
effect appeared maximal in the analysis reported by Lau et al. (2013).
Extreme outliers in N400 amplitude were removed (3 standard devia-
tions or more from the mean). Altogether, after the removal of both
artifact and extreme outliers, 18.3% of related trials and 17.7% of un-
related trials were removed from analysis.

4.3. Hypothesis testing

We ran our rational adaptor model for each participant, based on the
specific sequence of trials he/she saw in Block 2. This yielded trial-by-
trial model outputs for each participant for each individual target item in
Block 2. These values were entered as the predictor variable into a linear
mixed effects regression model in the R statistical software program
version 3.2.4 (R Core Team, 2016). The trial-by-trial amplitude of the
N400 evoked by each target word in each participant in Block 2 was the
outcome variable. Additional control predictors were included as ne-
cessary for particular hypothesis tests, as described below. The maximal
random effects structure across (crossed) subjects and items for the in-
dependent variable of interest (rational adaptor model output) was used
(Barr, Levy, Scheepers, & Tily, 2013). Regression models were fit using
restricted maximum likelihood with the lme4 package version 1.1–11
(Bates, Mächler, Bolker, & Walker, 2015). All continuous predictors were
z-transformed, with p-values calculated using the Satterthwaite approx-
imation to degrees of freedom in the lmerTest package version 2.0–30
(Kuznetsova, Brockhoff, & Christensen, 2015).

5. Results

5.1. Visualization of trial-by-trial ERP data and model predictions

In order to visualize the changes in N400 amplitude over target
items in Block 2, without assuming any particular parameters of the
adaptation, we conducted a loess local regression over N400 amplitudes
for related and unrelated words across the ordinal position of critical
items in the experiment. The N400 amplitudes evoked by related and
unrelated critical targets in Block 2 are shown in Fig. 2. As can be seen,
the amplitude of the N400 evoked by related and unrelated targets were
initially similar, but then diverged as participants were exposed to more
and more trials within Block 2 and adapted to its statistical structure.
We also noticed that N400 amplitudes for these two conditions con-
verged again at the very end of Block 2 (see Discussion).

For comparison, we also visualize the trial-by-trial output of our
rational adaptor model, computed for each individual participant based
on the specific sequence of trials they saw in Block 2, see Fig. 3. We first
observe that, across participants, the model’s estimates of target prob-
ability are more consistent for related than for unrelated trials. This is
because the model’s estimates of the probability of encountering targets
in related trials are largely driven by FAS, which is relatively consistent
across all related trials (between 0.5 and 1 for all related targets). In

contrast, its estimates of the probability of encountering targets in un-
related trials are largely driven by frequency, which can vary across
many orders of magnitude. Thus, each participant’s idiosyncratic or-
dering of critical trials causes larger fluctuations in model outputs for
unrelated than for related trials. Comparing Fig. 3 to Fig. 2, we see that,
although our computational model predicts a large disparity between
related and unrelated trials from the start (unlike the initial similarity
seen in the N400 data), it correctly predicts an increase in the diver-
gence between related and unrelated trials over the course of Block 2,
particularly within the first approximately 100 trials. Our model does
not predict the convergence at the end of Block 2 (see Discussion).

5.2. Trial-by-trial model output explains trial by trial variance in N400
amplitudes

We first asked whether our model’s trial-by-trial output explains
trial-by-trial variance in N400 amplitudes within Block 2. Recall that
our model makes individualized predictions for each trial in each par-
ticipant, based on the word-level characteristics of the trial and the
participant’s idiosyncratic history of related and unrelated trials seen up
until that point in the experiment. We can thus test our model predic-
tions against single-trial N400 amplitudes in each participant.

We first z-transformed the trial-by-trial output values of our model
and used these values as the predictor in a linear mixed effects re-
gression analysis with the N400 amplitude on each trial in Block 2 as
the outcome variable. We included the maximal random effects struc-
ture: by-subjects intercepts and random slopes of model output, and by-
target-word intercepts and random slopes of model output. As expected,
the model’s trial-by-trial output values significantly accounted for
variance in trial-by-trial N400 amplitudes (β=−1.14, t=−5.24,
p < 0.001): the higher the estimated probability of the target words,
the larger (more negative) the N400 amplitude, with a 1 bit increase in
model-predicted surprisal (-log probability) corresponding with a
∼0.18µv increase in N400 amplitude, 95% CI [0.11, 0.24 µv/bit].

By design, the unrelated targets had lower probabilities than the
related targets. As such, it is plausible that effect described above
simply reflected the well-established categorical semantic priming ef-
fect (in this study, the main effect of Relatedness that was already re-
ported by Lau et al., 2013). To determine whether the inclusion of our
model’s trial-by-trial outputs accounted for variance in N400 amplitude
over and above this categorical effect, we ran a second linear mixed
effects regression model that included not only the model’s output on
each trial, but also a categorical Relatedness control predictor. We
again included by-subject and by-target-word intercepts and random
slopes of model output. This showed that our model’s output on in-
dividual trials accounted for variance in N400 amplitude (β=−2.21,
t=−2.76, p=0.006), over and above the categorical effect of Re-
latedness. We caution that, given the multicollinearity between the
model’s trial-by-trial output and the Relatedness effect (the primary
motivation for running this test in the first place), this β estimate is
likely inflated. We therefore limit our conclusions here to establishing
the significance of the effect, rather than its marginal magnitude.

5.3. The rational adapter model outperforms its constituent elements alone

The analysis described above indicates that our computational
model was able to explain trial-by-trial variance in N400 amplitudes.
However, it may be that its additional explanatory power over and
above the categorical effect of Relatedness, was simply due to the in-
clusion of items-level information (FAS and frequency, both known to
predict N400 amplitude) within the model, rather than the specific way
in which such information combined together with rational adaptation
on each trial to yield final trial-by-trial outputs. To address this possi-
bility, we ran an additional regression model that tested the effect of the
rational adaptor model’s output, but this time controlling not only for
categorical Relatedness (as in the previous regression model), but also

4 In principle, our single-trial modeling approach could be used to model
every item in the experiment (not just these counterbalanced target items).
However, because the remaining items were coded as fillers in the original
experiment, we were unable to extract their ERPs for single trial analysis.
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for trial-by-trial frequency and FAS — the item-specific constituent
elements that went into our rational adaptor model. Specifically, log-
transformed frequency and log-transformed FAS were included as
control predictors. (Because the log transformation requires a non-zero
probability, all unrelated targets were given a probability of 0.005 —
i.e. half a percent—prior to log transforming.5) Again, by-subjects and
by-target-word intercepts and random slopes of model output were
included, and all continuous predictors were standardized.

We found that the model’s trial-by-trial output significantly ac-
counted for variance in N400 amplitudes (β=−2.30, t=−2.11,
p=0.036), above and beyond frequency, FAS, and Relatedness. This
indicates that the increased fit described above was not simply due to the
fact we included additional information about items-level features.
Rather, it tells us that the particular way in which these items-level
features combined within the model, including weighting by the Rational
Adaptation component, was an important source of explanatory power.

5.4. Finding the optimal prior precision

As discussed in the Calculation section, in addition to setting a prior
over participants’ beliefs about the expectation of seeing a related

versus an unrelated prime-target pair (µ), we also needed to set a prior
over participants’ confidence in this belief. This was given by the
“sample size” or pseudocount of the prior — its precision, ν. This
number specifies the number of trials within Block 2 that participants
would need to have encountered before beginning to give more weight
to the statistics of Block 2 trials (50% related pairs) than the statistics of
Block 1 trials (10% related pairs, as reflected in their prior beliefs). It
therefore determines the rate of adaptation over trials (see Fig. 1, which
shows the adaptation of µ for different prior pseudocounts ν). Our
model assumes that participants had some prior expectation that the
environment was non-stationary—that is, that the statistical structure
of Block 2 might differ from Block 1, and we set this prior precision at
ν=50. This 50 pseudocount prior, however, was merely a ballpark
figure, chosen to be non-trivially different from 0 (assuming that par-
ticipants did retain some expectations from the previous block), but
much less than 400 (the total number of trials in Block 1). We therefore
next sought to ensure that our results were not idiosyncratically de-
pendent on having made a lucky guess.

It is an empirical question what prior ν best accounts for the variance
in N400 amplitude over the course of Block 2. To estimate this value, we
re-calculated our rational adaptor model for every possible integer-valued
ν from 1 to 800 pseudocounts (i.e. we re-calculated the model’s target
probability estimates for all trials for all participants, as above). This
1–800 range encompassed the range from holding almost no beliefs from
Block 1 to near-complete resistance to new statistical information from
Block 2. We then ran 800 separate regression models with the outputs of
each computational model and categorical Relatedness as predictors, the
amplitude of the N400 as the dependent variable, and a maximal random
effects structure (as described above). After fitting each of these 800 re-
gression models, we extracted the log-likelihood of each in order to
identify the ν that maximized model fit. As our aim was only to describe
the present dataset, and we don’t believe that the exact speed of adapta-
tion here should necessarily generalize to other experiments (meaning that
the optimal ν should be interpreted as a descriptive statistic characterizing
the present data set only), we preferred this approach of maximizing
model fit over all of the data to an approach that maximized cross-vali-
dated prediction error over smaller subsets of the data.

These data are shown in Fig. 4. This shows that there was a single
maximum log-likelihood with a beta(69.3, 7.7) prior, or ν=77 pseu-
docounts. However, all pseudocounts between 70 and 85 yielded very
similar model fits, and performance degrades smoothly on either side.
This indicates that, on average, participants in this study began giving
more weight to the data in Block 2 than in Block 1 after around 77 trials
into Block 2. In contrast, a much lower or much higher precision ν did
not account for the N400 data well because it would lead to adaptation
that was too fast or too slow respectively. We note that some models
had poor fits because they did not converge. (They appear to follow a
second curve, suggesting that they failed to converge in a similar way.)
None of the models that failed to converge were within the 70–85 range
capturing the maximum log-likelihood.

5.5. Log-transformed word probability (Surprisal) significantly accounts for
variance in N400 amplitudes above and beyond raw estimates of word
probability

In our rational adaptor model, we log-transformed our final esti-
mate of probability to convert these estimates into surprisal values for
each target. As discussed in the Theory section, this decision was based
on previous empirical evidence from behavioral studies that surprisal
may be a preferable measure of word processing difficulty than raw
probability, particularly for very low estimates of probability (Hale,
2001; Levy, 2008; Smith & Levy, 2013). We then explicitly tested the
hypothesis that log-transformed probability (surprisal) is a better pre-
dictor than raw probability of the N400 amplitude in the present se-
mantic priming dataset. Importantly, we addressed this question only
after completing all the other models described above (rather than

Fig. 2. N400 amplitudes over trials for related and unrelated trials, averaged
over all participant data in Block 2.

Fig. 3. The output of the rational adaptor model for each participant, calculated
based on their idiosyncratic trial ordering in Block 2.

5 Log-transformed frequency and FAS predictors (rather than raw prob-
abilities) were used for the most direct comparison with our model output,
which also log-transforms its final predicted probability. Moreover, frequency is
standardly log-transformed for use as a predictor of processing difficulty (see
references in Theory). However, as FAS is not standardly log-transformed, we
also ran a version of this model using raw FAS, as well as log frequency and
(categorical) Relatedness, as predictors. Results were qualitatively similar, and
all patterns of statistical significance were identical.
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trying many different assumptions and selecting the ones that yielded
the most publishable p-values).

To test this hypothesis, we directly compared surprisal and raw
probability (as computed by our model in both cases) as predictors of
N400 amplitudes. It would not be particularly fair to directly pit raw
probability against log-transformed probability (surprisal) using a
computational model with a prior precision that maximized the word
surprisal effect (computed as ν=77 pseudocounts, as described above),
and it would also not be particularly coherent to continue using the
arbitrarily-guessed prior precision of ν=50 pseudocounts. We there-
fore decided to derive the precision that optimized the word probability
effect, so that we could test the marginal contribution of word surprisal
given this prior degree of certainty. This can be viewed as the most
conservative prior with which to carry out this test.

We determined the optimal prior certainty for (standardized) word
probability by fitting 800 linear regression models with word prob-
ability and Relatedness as fixed predictors, and we then identified the
value of ν that maximized log-likelihood, as described above. This ap-
proach yielded a precision of ν=58 pseudocounts. We reran our ra-
tional adaptor model using ν=58 and extracted both raw probability
and log-transformed trial-by-trial outputs. We then carried out another
regression model to test the hypothesis that these log-transformed
probability (surprisal) values could significantly account for variance in
N400 amplitude, above and beyond what could already be accounted
for with raw word probability estimates. Again, we included the control
categorical Relatedness variable in this regression model, and we again
used the maximal random effects structure.

We found that surprisal on each trial did indeed significantly ac-
count for variance in N400 amplitudes (β=−2.09, t=−2.57,
p=0.011) above and beyond estimates of raw word probability on
each trial (in addition to the categorical Relatedness control variable).
In contrast, estimates of raw word probability on each trial did not
account for any significant variance in N400 amplitude that was not
already accounted for by surprisal and the control variable, Relatedness
(β=0.38, t= 0.67, p= 0.48), despite the fact that its optimal prior
had been assumed.

6. Discussion

It is well established that the magnitude of the behavioral semantic
priming effect is sensitive to the predictive validity of the broader ex-
perimental environment (Neely, 1991; Tweedy et al., 1977). This effect
of predictive validity also influences the modulation of the N400 ERP
component — a direct neural index of semantic processing (Kutas &
Federmeier, 2011): when the proportion of related word-pairs within

an experimental block increases, the N400 priming effect increases
(Brown et al., 2000; Holcomb, 1988; Lau et al., 2013). In this study, we
show that a quantitative Bayesian model was able to predict how the
amplitude of the N400 evoked by individual target words changed as
participants adapted, trial by trial, to a new, higher predictive validity
environment (Block 2, in which 50% of trials were related word-pairs),
following a lower predictive validity environment (Block 1, in which
only 10% of trials were related word-pairs).

Several previous studies of semantic priming have shown that the
amplitude of the N400 evoked by a target word is influenced by the FAS
of its prime (Luka & Van Petten, 2014; van Vliet et al., 2016) and by the
proportion of related word-pairs in its broader experimental environ-
ment (Brown et al., 2000; Holcomb, 1988; Lau et al., 2013). We also
know that when words are presented in isolation of any context, the
amplitude of the N400 is influenced by their frequency (Laszlo &
Federmeier, 2014). What is novel about our computational model is
that it explicitly specifies how these factors quantitatively combine to
compute the final probability of encountering a given target word. We
found that this final estimate of probability (log-transformed) ac-
counted for variance in the amplitude of the N400 evoked by targets
beyond the static (average) categorial effect of Relatedness (within
Block 2), and beyond the independent effects of items-level information
like frequency and FAS. In other words, it was the particular way our
model combined these two types of information and updated their
weights, trial-by-trial, that accounted for additional variance.

Our model incorporates several core principles of probabilistic
prediction, rational adaptation and their relationship. First, it assumes
that participants weight the degree to which they use the predictability
of a local context (here, the FAS of the prime) by their belief about
whether that local context will be informative of the upcoming input. In
our model, the informativeness (or predictive validity) of the prime was
operationalized as the agent’s belief that she would encounter a related
(as opposed to an unrelated) target, and it was modeled by the mean
parameter of the beta distribution.

Second, our model assumes that participants’ belief about the in-
formativeness/predictive validity of a local context can be updated,
based on new inputs, according to Bayes’ rule. A core principle of
Bayesian inference is that the degree to which the agent updates her
prior belief depends on her certainty in that belief, with greater un-
certainty leading to more updating based on the current input (as op-
posed to the prior history). In our model, participants’ uncertainty
about the predictive validity of the prime was represented by the pre-
cision parameter of the beta distribution, which describes participants’
(expected) uncertainty about the statistical structure of the current
environment (Yu & Dayan, 2005).6 Intuitively, the lower the precision,
the wider the beta distribution and the less confident the agent is about
the prime’s predictive validity. Importantly, we initially set the preci-
sion parameter to a value that was lower than the number of trials that
had actually been observed over Block 1 (ν=50 as opposed to
ν=400). Therefore, a key assumption of our model was that, at the
beginning of Block 2, participants had some uncertainty about the
statistical structure of the environment. This uncertainty is what al-
lowed them to successfully adapt to Block 2.

Third, our model assumes that, as participants accumulate more
data, they become increasingly confident about statistical structure of
the environment (and hence the predictive validity of the prime), and
so the rate of adaptation decreases. This once again illustrates a core
principle of Bayesian inference: uncertainty decreases as more data are

Fig. 4. Log-likelihoods of fitted regression models testing the rational adaptor
model with different prior values of the precision parameter ν. Larger (i.e. less
negative) log-likelihoods indicate better fit. A prior strength of ν=77 optimizes
the fit of the rational adaptor model to the empirical N400 data.

6 This type of expected uncertainty about the statistical structure of the en-
vironment is known as estimation uncertainty (Payzan-LeNestour & Bossaerts,
2011). Another type of expected uncertainty is outcome uncertainty or risk,
which describes uncertainty resulting from the inherently stochastic nature of
an outcome. In the current model, outcome uncertainty would be influenced by
the mean parameter of the beta distribution and was maximal at 0.5.
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observed (so long as the statistical structure of the environment is as-
sumed to be stable). In our model, this increase in confidence was re-
flected by the trial-by-trial increase in the value of the precision para-
meter of the beta distribution (the number of pseudocounts). Because
this precision parameter set the degree to which participants weighted
their prior history versus the current input during belief updating, its
increase on successive trials meant that, on average, each successive
trial carried less weight. This is illustrated in Fig. 2: the pattern of N400
amplitude across trials suggests that adaptation proceeded more rapidly
at the beginning of Block 2 and then slowed as the block continued (see
Fig. 3, which illustrates our model’s estimate of the adaptation effect in
each participant; see also Fig. 1).

6.1. Implications of our findings for understanding the roles of probabilistic
prediction and adaptation during language comprehension

Probabilistic prediction and adaptation are closely linked and highly
relevant to communicating in the real world. Probabilistic prediction
leads to more efficient language processing, but only if such predictions
are based on the probabilistic statistical structure of the communicative
environment (Kuperberg & Jaeger, 2016, section 1). Because our real-
world environment is non-stationary — that is, the statistical structures of
our linguistic (and non-linguistic) inputs are constantly changing in
systematic ways, depending on who we are talking to or what we are
reading, we must adapt to different environments so that probabilistic
prediction remains efficient. Indeed, there is plenty of evidence that we
are able to adapt to changing environments by adjusting our predictions
at multiple levels of linguistic representation, including phonetic (Kraljic
& Samuel, 2006; Norris, McQueen, & Cutler, 2003; Vroomen, van Linden,
Keetels, de Gelder, & Bertelson, 2004), lexical (Creel, Aslin, & Tanenhaus,
2008), syntactic (Chang, Dell, & Bock, 2006; Hanulikova, van Alphen,
van Goch, & Weber, 2012; Kamide, 2012), and pragmatic (Grodner &
Sedivy, 2011; Nieuwland, Ditman, & Kuperberg, 2010). The present
model highlights the close computational links between probabilistic
prediction and adaptation (see also Chang et al., 2006; Dell & Chang,
2014). It is also consistent with previous work suggesting that adaptation
is, at least in part, based on rational Bayesian principles (e.g. Jaeger &
Snider, 2013; Kleinschmidt & Jaeger, 2015; Myslin & Levy, 2016). Our
results extend this previous work to show that these principles of rational
adaptation are evident in the brain, influencing the N400, which indexes
the earliest stages of accessing meaning from incoming words.

6.1.1. Adapting probabilistic prediction to different statistical environments
during language comprehension

Although in the present study, we modeled the effects of adaptation
on prediction in a simple semantic priming paradigm, we suggest that
our findings are relevant for understanding the relationships between
probabilistic prediction and adaptation during higher-level language
comprehension. Recent evidence suggests that, just as the ratio of re-
lated to unrelated word-pair trials within a block influences the mag-
nitude of the behavioral and N400 semantic priming effect, the ratio
of predictable to unpredictable sentences in an experimental environ-
ment influences predictability effects during sentence comprehension.
For example, the effect of lexical probability on reading times is in-
creased when there is a higher proportion of predictable sentences in
the environment (although this was a between-group effect; Brothers,
Swaab, & Traxler, 2017, Experiment 2). And a recent ERP study sug-
gests that the proportion of predictable spoken sentences in the en-
vironment can also influence the magnitude of the N400 expectancy
effect within participants, although, unlike in the present study, the
change between blocks was accompanied by a more overt signal — a
change in speaker identity (Brothers, Hoversten, Dave, Traxler &
Swaab, under review), which, as discussed below, may have provided a
cue that the environment had changed.

It will be therefore be important to determine whether the principles
incorporated in our computational model shed light on these sentence-

level adaptation effects. Of course, in extending this model, we empha-
size that there are critical differences between prediction during se-
mantic priming and sentence comprehension. First, in a semantic
priming paradigm, the "context" is a single word (the prime), and, to
generate predictions about the target, participants are likely to draw
upon their knowledge about simple semantic associations between
words, estimated in our model by the prime’s Forward Association
Strength. In contrast, during sentence comprehension, the context con-
stitutes the full set of words (and non-verbal information) that has been
encountered prior to a given incoming word. Comprehenders are
therefore likely to draw upon multiple different types of linguistic and
non-linguistic knowledge to generate estimates of the probability of the
upcoming words, typically estimated using the cloze procedure (Taylor,
1953)7. Moreover, different words, or combinations of words, within a
context may be associated with different predictive validities (or reli-
abilities), which may be weighted, possibly in a Bayes optimal fashion (cf
Knill & Saunders, 2003; Ernst & Banks, 2002), in generating predictions
(see Kuperberg, 2016, page 610, for discussion).

Another factor to consider when extending this type of model to
sentence comprehension is whether it is appropriate to log-transform the
final estimate of probability to compute the information theoretic mea-
sure, surprisal. In the present model, we included this final log-transform
step because previous work had suggested that surprisal can be a better
predictor of processing difficulty than raw probabilities, particularly for
very low probability words (Hale, 2001; Levy, 2008; Smith & Levy,
2013), and we estimated the unrelated targets in the present study to
have very low probabilities. Indeed, we subsequently verified that the
amplitude of the N400 was better predicted by the log-transformation of
the model’s estimated probability of each target word (its surprisal) than
by its raw probability. However, it is an open question whether surprisal
is a better predictor of N400 amplitude than raw probability during
sentence and discourse comprehension. It can be challenging to estimate
the true probabilities of low probability items using ngram corpus-based
methods (Ong & Kliegl, 2011) and cloze procedures, and so it will be
important for future studies to investigate the link between neural (and
behavioral) responses and probability in more detail, combining large-
scale cloze studies with state-of-the-art language models.

Finally, it is also important to bear in mind that, during higher-level
language comprehension, there may be metabolic costs incurred in
generating predictions based on higher-level context. Such costs are less
likely to be incurred during a simple semantic priming paradigm, and,
indeed, our mixture model assumed no such costs, weighting the use of
FAS and frequency purely by participants’ estimates of the prime’s
predictive validity (the mean of the beta distribution). Thus, in the
present model, participants’ confidence about prime’s predictive va-
lidity (represented by the precision of the beta distribution) influenced
the rate of adaptation across trials, but it had no direct effect on the
amplitude of the N400 evoked on any given trial. During higher-level
language comprehension, however, comprehenders may rationally al-
locate their limited resources in generating predictions based on their
confidence about the predictive validity of the local context. For ex-
ample, in situations of high uncertainty about the informativeness of a
given local context, comprehends may limit the influence of top-down
contextual prediction, relying more on bottom-up stimulus features.
This would be keeping with frameworks that highlight a role of preci-
sion in hierarchical message passing during predictive coding (e.g.
Feldman & Friston, 2010; see Clark, 2013, for a review).

While there are obviously many open questions, this type of model
illustrates some of the core computational principles that are important

7We emphasize that FAS between individual pairs of words is not thought to
play a major role in sentence or discourse comprehension (for behavioral evi-
dence, see Foss & Ross, 1983; Morris, 1994, Experiment 2; Traxler & Foss, 2000;
for ERP evidence, see Camblin, Gordon, & Swaab, 2007; Coulson, Federmeier,
Van Petten, & Kutas, 2005; Van Petten, 1993).
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to consider in models of prediction and adaptation during higher-level
language comprehension. More practically, it also highlights the need
to carefully describe not only any experimental manipulation of in-
terest, but also details about surrounding stimuli including fillers when
sharing research findings. For example, based on cloze norms, one
might estimate the probability of a particular word in a highly con-
straining sentence context to be 0.9. However, if only 50% of sentences
in an experiment end with an expected word, then, by the end of the
experiment, participants may estimate the actual probability of en-
countering a predictable word to be significantly lower (in our model,
expectations would asymptote to a probability of 0.45).

6.1.2. Inferring when to adapt during language comprehension
Another major set of outstanding questions is how the brain de-

termines when and how quickly to adapt in any given situation. Our model
was highly simplified in that, by initially setting the precision parameter to
a number that was much lower than the number of trials actually observed
during Block 1, we assumed that participants believed that Block 2 would
be different from Block 1, leading them to down-weight the importance of
information that they had gained over the course of Block 1, and adapt to
Block 2. During real world language processing, however, the brain must
infer when and how quickly to adapt to different communicative en-
vironments (see Qian, Jaeger, & Aslin, 2012, and Kleinschmidt & Jaeger,
2015 for discussion). This can be challenging because the agent must be
able to distinguish between inputs that are unpredicted as a result of a true
systematic change in the environment (so-called unexpected surprise)
from inputs that are unpredicted because of the inherent stochasticity of
the current environment and uncertainty about its statistical structure
(expected surprise; see Yu & Dayan, 2005; Qian et al., 2012 for discussion).
Correctly inferring how quickly to adapt to a systematically changing
environments is crucial for efficient language processing: if the brain
adapts too slowly or too quickly, then its probabilistic predictions will, on
average, be inaccurate.

Future work may be able to capture something about how the agent
infers how quickly to adapt by incorporating hyperparameters into
models of adaptation that specify beliefs about environmental non-
stationarity. These hyperparameters might specify expectations about
the rate of continuous environmental change (volatility, e.g. Behrens,
Woolrich, Walton, & Rushworth, 2007) or the frequency of discrete
change points (e.g. Gallistel, Mark, King, & Latham, 2001). Thus, in
addition to learning the current environmental statistics, this type of
hierarchical model would also be learning how likely the environment
is to change, with different levels of the model influencing one another.
The ability to incorporate these hyperparameters is a strength of the
Bayesian modeling approach we take here.

Another major challenge for the brain is that adaptation can poten-
tially interfere inappropriately with long-term knowledge, particularly
when changes in the local environment are only temporary (e.g. when
listening to an atypical speaker). This need to adapt locally without
losing the benefit of one’s previous or longer-term knowledge is known
as the stability-plasticity dilemma. One proposed solution to this di-
lemma is that comprehenders are able to keep track of multiple sets of
beliefs about environmental statistics (i.e. multiple models; see
Kleinschmidt & Jaeger, 2015; Qian, Jaeger & Aslin, 2012, 2016). Thus,
unexpected surprise may not simply lead participants to adapt their
current model to a new environment; it may instead lead them to switch
to a different pre-stored model, or switch to learn a new model entirely
(see Gallistel, Krishan, Liu, Miller, & Latham, 2014; Qian, Jaeger & Aslin,
2012, 2016). In real-world communicative situations, evidence that
comprehenders should switch models can also come from external cues,
such as a new face or a new voice indicating that one is now commu-
nicating with a different speaker. Again, this type of model switching can
be implemented naturally within a Bayesian modeling framework. The
rational adaptor model described here forms the basis for adaptation to a
single environment, which is a necessary building block towards being
able to store and retrieve multiple environmental models.

Relatedly, at a neural level, it will be important to determine
whether ERP components other than the N400 more specifically track
inferences about environmental change. For example, we have pre-
viously hypothesized that a family of late positivities (anteriorly dis-
tributed when evoked by highly informative incoming words, and
posteriorly distributed – the P600 – when evoked by words that are
semantically or syntactically anomalous) may reflect the detection of
unexpected surprise, triggering either rapid adaptation of the current
model, or model switching (Kuperberg, 2013; Kuperberg & Jaeger,
2016, section 4).

Finally, we emphasize that, in addition to rational principles of
Bayesian updating, both prediction and adaptation are likely to depend
on many other factors that influence utility, including task demands.
Indeed, as shown in Fig. 2, towards the end of the block, the magnitude
of the N400 effect appeared to become smaller. This may simply reflect
a general fatigue effect or anticipating the end of the experiment,
leading participants to invest less in the task. The best models of
adaptation would need to be robust to these additional processes or else
account for them.

7. Conclusion

In conclusion, our quantitative model of trial-by-trial adaptation on
the N400 ERP component provides evidence that (1) the brain com-
bines immediate contextual constraints with global probabilistic con-
straints to influence semantic processing of incoming words, (2) the
brain has some prior expectation that the broad statistical structure of
its environment might change and is able to rationally adapt its prob-
abilistic semantic predictions of incoming words in response to this new
environment.

Of course, there remains much work to be done to determine exactly
how these principles of probabilistic prediction and adaptation are in-
stantiated at the algorithmic and implementation/neural levels. There
is evidence for close links between probabilistic principles and some
connectionist models of language processing (McClelland, Mirman,
Bolger, & Khaitan, 2014; Rabovsky, Hansen, & McClelland, 2018) and
language adaptation (Chang et al., 2006; see Jaeger & Snider, 2013, for
discussion). There is also evidence that the population activity of neu-
rons can represent uncertainty that underlies probabilistic computation
(Fiser, Berkes, Orbán & Lengyel, 2010; Orbán, Berkes, Fiser & Lengyel,
2016), although we know little about how this plays out during lan-
guage comprehension. This study provides a mathematical description
of the links between probabilistic prediction and adaptation. By
showing that these principles influence modulation on the N400 — a
direct neural measure of semantic processing — our findings pave the
way towards bridging the experimental ERP, computational modeling
and neuroscience literatures, thereby providing new insights into how
our brains infer meaning from language.
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