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A B S T R A C T   

To comprehend language, we continually use prior context to pre-activate expected upcoming information, 
resulting in facilitated processing of incoming words that confirm these predictions. But what are the conse-
quences of disconfirming prior predictions? To address this question, most previous studies have examined 
unpredictable words appearing in contexts that constrain strongly for a single continuation. However, during 
natural language processing, it is far more common to encounter contexts that constrain for multiple potential 
continuations, each with some probability. Here, we ask whether and how pre-activating both higher and lower 
probability alternatives influences the processing of the lower probability incoming word. One possibility is that, 
similar to language production, there is continuous pressure to select the higher-probability pre-activated 
alternative through competitive inhibition. During comprehension, this would result in relative costs in pro-
cessing the lower probability target. A second possibility is that if the two pre-activated alternatives share se-
mantic features, they mutually enhance each other’s pre-activation. This would result in greater facilitation in 
processing the lower probability target. To distinguish between these accounts, we recorded ERPs as participants 
read three-sentence scenarios that constrained either for a single word or for two potential continuations – a 
higher probability expected candidate and a lower probability second-best candidate. We found no evidence that 
competitive pre-activation between the expected and second-best candidates resulted in costs in processing the 
second-best target, either during lexico-semantic processing (indexed by the N400) or at later stages of processing 
(indexed by a later frontal positivity). Instead, we found only benefits of pre-activating multiple alternatives, 
with evidence of enhanced graded facilitation on lower-probability targets that were semantically related to a 
higher-probability pre-activated alternative. These findings are consistent with a previous eye-tracking study by 
Luke and Christianson (2016, Cogn Psychol) using corpus-based materials. They have significant theoretical 
implications for models of predictive language processing, indicating that routine graded prediction in language 
comprehension does not operate through the same competitive mechanisms that are engaged in language pro-
duction. Instead, our results align more closely with hierarchical probabilistic accounts of language compre-
hension, such as predictive coding.   
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1. Introduction 

One of the most robust findings in the study of language compre-
hension is that the more predictable the input, the easier it is to process 
(Ehrlich & Rayner, 1981; Kuperberg & Jaeger, 2016; Rayner & Well, 
1996). Numerous studies have shown that, relative to less predictable 
words, more predictable words are processed faster (Staub, 2015) and 
produce smaller evoked neural responses (DeLong, Urbach, & Kutas, 
2005; Kutas & Hillyard, 1984). 

The most common explanation for this graded effect of predictability 
is that the prior context predictively pre-activates upcoming lexico- 
semantic information before new bottom-up input becomes available.1 

When a new word is encountered, its processing is facilitated to the 
degree that its semantic features have already been pre-activated. So 
long as these predictions are generated probabilistically, based on the 
statistics of the communicative environment, the ease of processing each 
incoming word should be inversely related to its prior probability, given 
the preceding context (DeLong et al., 2005; Federmeier, 2007; Kuper-
berg & Jaeger, 2016). Indeed, we know from numerous studies that the 
magnitude of the N400 — an ERP component that is thought to reflect 
the ease of accessing (or retrieving) the semantic features associated 
with an incoming word (Kuperberg, 2016; Kutas & Federmeier, 2011; 
Van Berkum, 2009) — is inversely related to that word’s contextual 
predictability, regardless of whether this is estimated using standard 
cloze procedures (cf. Taylor, 1953; e.g. Kutas & Hillyard, 1984; DeLong 
et al., 2005; Wlotko & Federmeier, 2012), or using large language 
models (cf. Brown et al., 2020; e.g. Michaelov, Coulson and Bergen, 
2021; Szewczyk & Federmeier, 2022; Heilbron, Armeni, Schoffelen, 
Hagoort, & de Lange, 2022). 

This predictive pre-activation account can also explain why, in plau-
sible sentences, the amplitude of the N400 produced by unpredictable 
words appearing in contexts that strongly constrain for an alternative 
continuation (e.g. “He bought her a pearl necklace for her…collection”) is no 
larger than the N400 produced by unpredictable words appearing in low 
constraint2 contexts that do not strongly predict any single continuation 
(e.g. “He looked worried because he might have broken his…collection”), e.g. 
Kutas and Hillyard (1984); Federmeier, Wlotko, De Ochoa-Dewald, and 
Kutas (2007); Kuperberg, Brothers, and Wlotko (2020). In both these 
situations, the incoming word’s lexico-semantic representation has 
received no pre-activation, and so it will be relatively harder to access/ 
retrieve, resulting in a relatively large N400 response. 

In most accounts of predictive pre-activation, it is assumed that, 
rather than predicting one word at a time, comprehenders pre-activate 
multiple potential continuations in parallel, outside conscious aware-
ness. For example, when reading “Johnathan brewed the…”, readers 
might pre-activate the lexico-semantic representations of “beer”, “coffee” 
and “tea” simultaneously, each with a different strength that is related to 
the probability of each lexico-semantic representation. As a conse-
quence, encountering any of these words would produce a smaller N400 
than a lower probability continuation (e.g. “Johnathan brewed the poi-
son”). This, however, raises a question that has not yet been addressed in 
the prior literature: During this pre-activation phase, what influence do 

these multiple, pre-activated alternatives exert on one another (excit-
atory and/or inhibitory), and what impact does this have on processing 
the incoming word when it subsequently becomes available? In princi-
ple, there are three possibilities. 

The first is that there are minimal interactions between the multiple 
pre-activated candidates until the new bottom-up input arrives. On this 
account, when the incoming word is encountered, the degree of facili-
tation it receives should depend solely on its own probability, regardless 
of the probability of any pre-activated alternatives. We refer to this as 
the independent pre-activation account. 

The second possibility is that, during the pre-activation phase, these 
multiple pre-activated alternatives begin to compete, mutually inhibiting 
one another through a winner-take-all mechanism. A consequence of 
this mutual inhibition is that when an incoming word subsequently 
becomes available, it should receive less facilitation than one would 
expect given its estimated probability. We refer to this as the competitive 
pre-activation account. 

Competitive interactions of this kind are implemented in classic 
Interactive Activation and Competition (IAC) models, which have been 
proposed as accounts of written word recognition (McClelland & Elman, 
1986; McClelland & Rumelhart, 1981), spoken word recognition 
(Dahan, Magnuson, Tanenhaus, & Hogan, 2001) and syntactic parsing 
(competitive ranked parallel models: Spivey & Tanenhaus, 1998; Mac-
Donald, Pearlmutter, & Seidenberg, 1994). Importantly, IAC architec-
tures have also been proposed to implement language production, with 
mutual inhibition between lexical candidates playing a central role in 
selecting a single candidate for later articulation (e.g. Chen & Mirman, 
2012). Recent work suggests that an IAC model (Chen & Mirman, 2012) 
can simulate times to produce predicted upcoming words in a speeded 
cloze completion task in which participants first comprehend a sentence 
context and then produce the most likely upcoming word; see Ness and 
Meltzer-Asscher (2021a) and Nakamura and Phillips (2022). Thus, if 
this type of competitive mutual inhibition operates during the pre- 
activation phase of language comprehension, this would provide evi-
dence that top-down prediction during language comprehension is 
routinely implemented through one of the same processing mechanisms 
that is employed in language production (Pickering & Garrod, 2013; Fitz 
& Chang, 2019; see also Van Petten & Luka, 2012; Thornhill & Van 
Petten, 2012).3 

The third possibility is that instead of acting as competitors, multiple 
pre-activated lexico-semantic candidates (e.g. beer, coffee, tea) serve to 
reinforce one another if they share semantic features. On this account, 
the presence of a semantically related pre-activated alternative would 
actually lead to more facilitation and a smaller N400 response than one 
would expect based on that word’s lexical probability. We will refer to 
this as the friendly pre-activation account. 

Evidence consistent with friendly pre-activation comes from the ERP 
studies showing that the pre-activation of semantic features can facili-
tate the processing of incoming words during language comprehension, 
even if these words are lexically unpredictable. For example, the N400 is 
reduced in response to implausible words that are semantically related to 
a predictable alternative (Kutas & Hillyard, 1984; Federmeier & Kutas, 
1999; for recent replications, see DeLong, Chan, & Kutas, 2019; Ito, 
Corley, Pickering, Martin, & Nieuwland, 2016). This anticipatory se-
mantic facilitation effect on the N400 has also been described on un-
expected (zero cloze) plausible continuations (DeLong & Kutas, 2020; 
Thornhill & Van Petten, 2012). However, no previous study ERP has 
asked whether, in contexts that constrain for multiple continuations, less 
expected but non-zero probability words can receive facilitation from a 
higher probability pre-activated alternative as a function of semantic 
overlap. 

1 We use the term “lexico-semantic” to refer to the semantic features asso-
ciated with a particular word. We provide a more precise discussion about the 
relationship between these features and a word’s conceptual and lexical rep-
resentations towards the end of the Discussion. By “predictive pre-activation”, 
we mean “the pre-activation of information at lower representational level(s) 
on the basis of information at higher levels within our internal representations 
of context, ahead of the bottom-up input reaching these lower levels” (Kuper-
berg & Jaeger, 2016, section 3, page 39). We do not make any assumptions 
about whether comprehenders pre-activate an upcoming word’s orthographic 
or phonological features (see DeLong et al., 2005, and Nieuwland et al., 2018 
for debate).  

2 Contextual constraint is usually operationalized as the probability of the 
context’s best (most probable) completion. 

3 Note, this wouldn’t imply that production-like mechanisms are never 
engaged in implementing top-down prediction during language comprehension, 
particularly in very high constraint contexts (see Federmeier, 2022). 
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Finally, we note that the competitive and friendly pre-activation ac-
counts are not mutually exclusive. For example, some IAC architectures 
include both intra-lexical competition and mutual reinforcement from 
shared semantic features (Chen & Mirman, 2012). These architectures 
might predict that a lower probability word would receive less facilita-
tion than expected if it is semantically unrelated to a higher probability 
alternative, but more facilitation than expected if it shares semantic 
features with the higher probability alternative. Indeed, Ness and 
Meltzer-Asscher (2021a) recently showed behavioral evidence consis-
tent with this type of hybrid account in a speeded cloze production task. 

Understanding whether and how pre-activated lexico-semantic al-
ternatives interact with one another is important not only for under-
standing the nature of routine predictive processing during language 
comprehension (including its relationship with language production), 
but also because of its ecological validity. In natural language, it is 
relative rare to encounter low probability words that violate a very high- 
constraint context. In contrast, we frequently encounter moderately 
constraining contexts that are predictive of multiple alternatives. 
Moreover, in these contexts, readers often encounter inputs that 
disconfirm the most probable continuation but confirm a lower proba-
bility continuation. 

This pattern was demonstrated in a key study by Luke and Chris-
tianson (2016), who measured cloze probability in a corpus of mixed- 
genre texts by asking readers to predict each word in turn. The au-
thors found that most words in these naturalistic texts were only 
somewhat predictable, with content words having an average cloze 
probability of 13%. Nonetheless, readers were more consistent, on 
average, in their expectations about upcoming content words, resulting 
in an average lexical constraint of 36%. Strikingly, although most 
incoming words disconfirmed an individual reader’s most common pre-
diction, 79% of words matched a cloze continuation that was produced 
by at least some participants. 

Luke and Christianson also examined eye-movement data as partic-
ipants read these texts for comprehension. Reading times were analyzed 
as a function of (a) the cloze probability of each word, and (b) whether 
or not each word was the most probable continuation produced by all 
participants in the cloze task. They found only an effect of cloze prob-
ability, but no interaction with whether or not the word was the most 
probable completion. In addition, the authors calculated the semantic 
relationship between each content word and the full set of offline cloze 
responses produced in response to the prior context. They found 
enhanced behavioral facilitation on words that were more semantically 
related to these alternative predictions. Thus, taken together, Luke and 
Christianson’s findings suggest that, during natural reading, parallel 
lexico-semantic pre-activation provides benefits (friendly pre-activation), 
but no costs (no competitive pre-activation), on reading times. 

1.1. Goals of the present study 

Given the theoretical and ecological importance of Luke and Chris-
tianson’s behavioral findings, we wanted to carry out a conceptual 
replication of their work. We had three main goals. 

First, we wanted to determine whether Luke and Christianson’s re-
sults held up using controlled experimental materials. We see the use of 
naturalistic and controlled experimental stimuli as complementary ap-
proaches. Luke and Christianson (2016) provided key data about the 
distributions of cloze and constraint values within naturalistic text by 
virtue of using texts gathered from a variety of real-world sources such 
as news articles and fiction. Moreover, their use of extended multi- 
sentence texts provides the most ecologically valid reading experience 
for experimental participants. However, as the authors discuss, with 
these types of stimuli, it is difficult to dissociate effects of lexical prop-
erties such as word length and frequency from effects of context-specific 
predictability, since these effects are inherently confounded in naturally 
occurring texts. Naturalistic corpus studies also introduce the possibility 
of uncontrolled spill-over effects, or other effects arising from 

uncontrolled properties of the text (Rayner, Pollatsek, Drieghe, Slattery, 
& Reichle, 2007; Brothers, Hoversten, & Traxler, 2017; Angele et al., 
2015; see Brothers & Kuperberg, 2021 for recent discussion). Thus, the 
use of controlled experimental stimuli offers an opportunity to specif-
ically test the hypotheses motivated by the theories described above, 
while controlling for lexical factors such as word length and frequency. 

Second, we were interested in replicating Luke and Christianson’s 
behavioral findings using a different technique — ERPs instead of 
reading times. ERPs provide a time-sensitive measure of online 
comprehension. The N400 component, in particular, is known to be 
sensitive to many of the same factors that influence reading times, 
including frequency, predictability, and semantic overlap, and this 
component has played a central role in debates on the role of prediction 
and misprediction in language comprehension (Van Petten & Luka, 
2012; see also Federmeier, 2007; DeLong et al., 2005; Nieuwland et al., 
2018). Moreover, although many classic connectionist and neural 
network models of language processing were originally developed to 
simulate behavioral findings, ERPs provide an important test case of the 
computational principles implemented by these models (see Nour 
Eddine, Brothers, & Kuperberg, 2022 for a comprehensive review). ERPs 
therefore provide an important and complementary perspective to 
behavioral findings. 

Third, ERP methods allow us to examine not just the initial stages of 
lexico-semantic processing, indexed by the N400, but also later ERP 
components that might be particularly sensitive to the disconfirmation 
of prior predictions. Previous behavioral studies have found little evi-
dence of late processing costs on lower probability continuations that 
are inconsistent with a prior higher probability prediction (Luke & 
Christianson, 2016; Frisson, Harvey, & Staub, 2017; Steen-Baker et al., 
2017; Fischler & Bloom, 1979, 1985; Schwanenflugel & Lacount, 1988; 
but see Ness and Meltzer-Asscher, 2021b, who showed that participants 
took longer to make speeded congruency decisions in two-word phrases 
in which the second word violated a prediction, e.g. “rearview camera” 
where mirror was predicted vs. “desert storm” where there was no strong 
prediction). However, several ERP studies have reported that in plau-
sible sentences, unexpected (zero-cloze) words appearing in contexts 
that constrain strongly for a single alternative (e.g. “He bought her a pearl 
necklace for her…collection”) can sometimes produce a larger late 
frontally-distributed positive component between 500 and 1000 ms, in 
comparison with unexpected words appearing in low constraint contexts 
(e.g. “He looked worried because he might have broken his…collection”, see 
Federmeier et al., 2007; Kuperberg et al., 2020; Lai, Rommers, & Fed-
ermeier, 2021). 

One possible interpretation of this late frontal positivity effect is that 
it indexes late processing “costs” associated with suppressing an incor-
rect lexical prediction (Kutas, 1993; Ness & Meltzer-Asscher, 2018). This 
would follow from an account in which the prediction of a higher- 
probability pre-activated alternative remains active in the late time 
window and, in order to successfully integrate the lower-probability 
incoming word into its prior context, it is necessary to suppress/ 
inhibit this incorrect prediction within this later time window. This late 
suppression account would therefore predict a larger late frontal posi-
tivity on less versus more probable words in contexts that constrain for 
multiple continuations, where there would also be additional demands 
to inhibit an incorrectly pre-activated competitor. 

1.2. Design and questions addressed in the present study 

To address the questions outlined above, we developed a set of ma-
terials with two types of contexts, each continuing with either a more or 
a less expected critical word. 

First, WithCompetitor contexts, such as (1), always constrained for 
two upcoming words — a more probable expected alternative (e.g. 
hearts) and a less probable alternative (e.g. flowers). Following these 
contexts, participants saw either the Expected critical word (“hearts”) or 
the SecondBest critical word (“flowers”). 
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Second, NoCompetitor contexts, such as (2), always constrained for 
just one upcoming continuation (e.g. roses). Participants saw either this 
Expected critical word or a ZeroCloze but plausible critical word (e.g. 
rocks).  

(1) WithCompetitor context: 
Stephen wanted to do something special for his girlfriend. He 

decided to make her a hand-made card. On it, he drew some… 
Expected: hearts / SecondBest: flowers  

(2) NoCompetitor context: 
Alexis was thrilled with her new garden. All of the flowers had 

bloomed overnight. In particular, she loved the… Expected: roses 
/ ZeroCloze: rocks. 

In the WithCompetitor contexts, the cloze probabilities of the Sec-
ondBest critical words were, on average, lower than those of the Expected 
critical words in both the WithCompetitor and NoCompetitor contexts. 
However, as discussed in the Methods, the range of cloze probability 
values within each condition was wide, allowing us to address our hy-
potheses at varying degrees of predictability. Specifically, we addressed 
three sets of questions. 

First, is there any evidence that competitive pre-activation influences 
the magnitude of the N400? The competitive pre-activation account pre-
dicts that in WithCompetitor contexts, prior to the presentation of the 
incoming word, there should be some degree of mutual inhibition be-
tween the two pre-activated alternatives (e.g. between <hearts > and <
flowers > in (1) above). This should result in less facilitation and a larger 
N400 in response to both the SecondBest and the Expected critical word 
than one would expect based only on their cloze probabilities. In 
contrast, if the N400 response to each of these words remains propor-
tional to its cloze probability, with no penalty for having pre-activated a 
competitor, this would provide evidence for the independent pre-activa-
tion account. For specific details about how we statistically tested these 
hypotheses, see Models 1 and 2 in the Results section. 

Second, is there any evidence that friendly pre-activation influences 
the N400? The friendly pre-activation account predicts that there should 
be a facilitatory effect on the N400 produced by a lower probability 
word whenever it shares semantic features with a higher probability pre- 
activated alternative. To address this question, we began by considering 
all scenarios in which a lower probability critical word appeared in place 
of a potentially pre-activated alternative—namely, the NoCompetitor 
ZeroCloze and the WithCompetitor SecondBest scenarios, asking if there 
was any additional facilitation on the N400 as a function of how 
semantically related the observed word was to the more expected 
continuation (Model 3, Results). In addition, because previous ERP work 
has only demonstrated this type of facilitatory effect on zero-cloze words 
(DeLong & Kutas, 2020; Federmeier & Kutas, 1999; Kutas & Hillyard, 
1984; Thornhill & Van Petten, 2012), we separately tested for evidence 
of friendly pre-activation on the subset of WithCompetitor SecondBest 
continuations, which always had non-trivial cloze probabilities (Model 
4, Results). 

Our investigation of the N400 across these scenarios provided a 
strong test of whether pre-activating multiple alternatives results in 
competition or facilitation. However, as noted above, competitive and 
friendly pre-activation are not mutually exclusive, and, in principle, both 
can influence the degree of facilitation on an incoming word, jointly 
impacting the amplitude of the N400. Therefore, we also wanted to test 
for an effect of competitive pre-activation in isolation of any facilitatory 
effects. To do this, we conducted an analysis on the subset of SecondBest 
words that were unrelated to the expected continuation (Model 5, 
Results). 

Third, and finally, we turned to the question of whether there was 
any evidence of late suppression on the late frontal positivity produced 
by SecondBest critical words in the WithCompetitor contexts. According to 
the late suppression account, late costs should be incurred when sup-
pressing an unobserved strongly pre-activated alternative in order to 

integrate an observed lower-probability incoming word into the prior 
context. In the WithCompetitor contexts, this would predict a larger late 
frontal positivity on SecondBest than on Expected completions. We 
therefore compared the amplitude of the late frontal positivity to these 
two types of completions (Model 6, Results). 

2. Methods 

2.1. Materials 

2.1.1. Overall design 
Our stimuli consisted of plausible, three-sentence discourse sce-

narios. This three-sentence stimulus design was based on prior studies 
(Brothers, Wlotko, Warnke, & Kuperberg, 2020; Kuperberg et al., 2020) 
and provided a slightly more natural reading experience than one- 
sentence stimuli. In each scenario, the first two sentences introduced 
the scenario using a variety of sentence structures. The third sentence 
was more controlled and consisted of an adverbial phrase, the subject, a 
transitive verb, an optional determiner, a direct object critical noun, and 
3–4 words to conclude the sentence. 

As described in the Introduction, the prior context either constrained 
for either one or two upcoming words, i.e., WithCompetitor and NoCom-
petitor contexts, respectively (see Table 1). In the WithCompetitor con-
texts, participants either saw the Expected (A1) or SecondBest (A2) 
continuation. In the NoCompetitor contexts, participants either saw the 
Expected continuation (A3) or a ZeroCloze but plausible (A4) continua-
tion. We refer to these four conditions as the TargetScenarios. Because the 
specific critical words varied across the four types of TargetScenarios, to 
control for low-level lexical differences across items, we also constructed 
a set of ControlScenarios, which used the same four critical words as 
those used in the TargetScenarios (B1–B4). These were generated by 
writing two new introductory sentences and pairing these with the same 
final sentences used in the TargetScenarios. In these ControlScenarios, 
there were no clear preferences for a particular continuation, making 
them relatively non-constraining and non-competitive in nature. 

In Table 1, we present all of the eight conditions described above-
—namely, the four conditions in the TargetScenarios group (A1: With-
Competitor Expected, A2: WithCompetitor SecondBest, A3: NoCompetitor 
Expected, A4: NoCompetitor ZeroCloze), and the four conditions with 
lexically-matched critical words in the ControlScenarios group (B1–B4). 
All scenarios were written to be semantically plausible (see below for a 
rating study that verified that this was the case). 

2.1.2. Cloze norming and item selection 
To create and classify our stimuli into the eight conditions described 

in Table 1, we carried out cloze norming studies. For this, we recruited 
participants from within the United States through Amazon Mechanical 
Turk. Based on self-report, all participants were between the ages of 
18–35 and their native language was English. All participants provided 
informed consent, and they were compensated for their time. 

On each trial in this task, participants saw one stimulus item up to 
(but not including) the critical word. They were then asked to respond 
with “the most likely next word” (Taylor, 1953). After providing their 
response, participants were then asked to give two further possible re-
sponses for each context, each with the prompt, “Please enter another 
likely next word.” In this way, we obtained the first, second, and third 
best continuations from each subject for each item (see also Federmeier 
et al., 2007; Schwanenflugel & Lacount, 1988). All participants 
completed a guided practice before viewing the experimental stimuli. 
Stimuli were normed in batches of different sizes (from 4 to 74 stories), 
which took approximately 3–60 min. Participants were paid up to $6 per 
hour for their time. At least 50 participants provided continuations for 
each context. In total, over 800 vignettes were normed for consideration. 

For each item, we determined its contextual constraint by identifying 
the most common completion for each context, and then calculating the 
percentage of participants who provided that particular word as their 
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first response. The cloze probability of each critical word was calculated 
as the percentage of respondents providing that word as their first 
response. We will refer to this as the top-1 cloze probability. In addition, 
for each item, we calculated a measure of cloze probability that was 
based on the percentage of respondents for whom the critical word was 
one of their three responses. As discussed below, this was particularly 
important in allowing us to identify WithCompetitor contexts, even in 
contexts where most of the top-1 probability mass was taken up by the 
most expected target word. We will refer to this second measure as the 
top-3 cloze probability. 

Using these norming data, we then constructed a set of 60 With-
Competitor and 60 NoCompetitor contexts with a wide range of contextual 
constraints (33–92%). As described above, the NoCompetitor contexts 
(Mean constraint: 61%) did not have a second continuation with non- 
trivial cloze probability (i.e. all alternative continuations provided in 
the cloze task had a top-1 cloze probability below 10%). The NoCom-
petitor Expected (A3) words had a top-1 cloze probability of at least 33% 
and were always the modal completion for their context. The NoCom-
petitor ZeroCloze (A4) words were chosen to have a cloze probability of 
near 0%.4 

As also described above, the WithCompetitor contexts (Mean 
constraint: 57%) could be followed by at least two continuations with 
non-trivial cloze probabilities. The WithCompetitor Expected (A1) critical 
words had a top-1 cloze probability of at least 36% and were always the 
modal completion for their context. The WithCompetitor SecondBest (A2) 
words either had a top-1 cloze probability >10% or a top-3 cloze 
probability >25%.5 These SecondBest completions were typically listed 
as being “second most likely” by participants. However, in a few cases, 
we instead took the third best completions in order to avoid repeating a 
critical word within the experiment. To the extent possible, all critical 
words were matched across conditions in length, log word frequency, 
orthographic neighborhood size, and semantic concreteness. 

Across the ControlScenarios (60 for the WithCompetitor conditions and 
60 for the NoCompetitor conditions: B1–B4), the average constraint was 
19% with a range of 8–52%. The critical words, when presented in these 
control discourse scenarios, had an average top-1 cloze probability of 
below ~5%. 

Across the full stimulus set, the contexts had an average constraint of 

39% and an average cloze probability of 18.5% for the target and control 
critical words. Therefore, unlike some prior studies, these levels of 
constraint and predictability were highly similar to those encountered in 
naturalistic texts (Luke & Christianson, 2016). 

2.1.3. Plausibility norming 
Late frontally distributed positivities are only produced by unex-

pected words when they can be plausibly integrated into their prior 
contexts (e.g. Kuperberg et al., 2020; Van Petten & Luka, 2012). In 
contrast, highly implausible/anomalous critical words often produce a 
late posteriorly distributed positivity effect, known as the P600 
(Kuperberg, 2007, section 3.4 page 32; Kuperberg, Sitnikova, Caplan, & 
Holcomb, 2003; van de Meerendonk, Kolk, Vissers, & Chwilla, 2010; 
Paczynski & Kuperberg, 2012; Kuperberg et al., 2020), while mildly 
implausible words tend not to produce robust late positivities at all (e.g. 
Kuperberg et al., 2003; van de Meerendonk et al., 2010). We therefore 
wanted to verify that our scenarios were indeed plausible. To do this, we 
conducted a plausibility norming study using the online platform, Pro-
lific (www.prolific.co). We recruited a set of participants in the US and 
UK who listed their first language as English, and then asked them to rate 
various scenarios on a scale of 1–7 (1 = “makes no sense at all”; 7 =
“makes perfect sense"). 

In this norming study, we included not only all the scenarios from the 
current study, but also sets of three-sentence scenarios from prior studies 
run in our lab that had previously been normed to be plausible, highly 
implausible/anomalous, and semi-implausible. Specifically, we included (a) 
the high constraint expected and high constraint unexpected scenarios from a 
study by Kuperberg et al. (2020), which had been normed to be plausible,6 

(b) the high constraint anomalous scenarios, also from Kuperberg et al. 
(2020), which contained selection restriction violations and were there-
fore highly implausible, and (c) a set of scenarios from Greene, Brothers, 
Weber, Noriega, and Kuperberg (2020), without selection restriction vi-
olations, that had previously been normed to be semi-implausible. 

To keep the task length reasonable, each participant saw a subset of 
items: 60 from the current experiment, 38 or 39 from the previous 
studies, as well as 10 sanity check items that were designed to be either 
very plausible or highly implausible. Items were counterbalanced such 
that no participant saw more than one version of each scenario. Each 
version was rated by 10 participants. 

The results are given in Table 2. They confirm that the TargetSce-
narios (A1–A4) and ControlScenarios (B1–B4) in the present study all 
received plausibility scores that were higher than those of the highly 

Table 1 
Stimuli.  

Stimulus group Context type Continuation type Average cloze 
(SD) 

Example contexts with both continuation types 

Target Scenarios WithCompetitor Expected 
(A1) 

57.4% (14.7%) Stephen wanted to do something special for his girlfriend. He decided to make her a 
hand-made card.  

On it, he drew some… hearts (A1) / flowers (A2) SecondBest (A2) 16.3% (8.5%) 

NoCompetitor 

Expected 
(A3) 

60.9% (15.0%) Alexis was thrilled with her new garden. All of the flowers had bloomed overnight.  

In particular, she loved the… roses (A3) / rocks (A4) ZeroCloze 
(A4) 

0.1% 
(0.4%) 

Control 
Scenarios 

Controls for 
WithCompetitor 

Control for A1 
(B1) 

4.5% 
(7.2%) 

Stephen always doodled in class. He took out a fresh sheet of paper.  

On it, he drew some… hearts (B1) / flowers (B2) 
Control for A2 
(B2) 

3.0% 
(5.0%) 

Controls for NoCompetitor 

Control for A3 
(B3) 

5.5% 
(7.9%) 

Alexis had just moved to a new city. She enjoyed exploring new sites.  

In particular, she loved the… roses (B3) / rocks (B4) Control for A4 
(B4) 

0.3% 
(1.3%)  

4 3 out of 60 words in this condition were chosen by a single participant (out 
of >50 participants) in cloze norming, giving them a non-zero cloze probability 
of <2%. The remainder had 0% cloze probability.  

5 The choice of the exact values of 10% and 25% was arbitrary, reflecting our 
intuition of approximately what constitutes a non-trivial competitor. However, 
we do not expect there to be a true categorical cutoff for what constitutes a non- 
trivial competitor. 

6 33 items from Kuperberg et al. (2020) were not included because they were 
extremely similar or identical to the scenarios used in the present study. 
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implausible/anomalous and semi-implausible scenarios used in our previ-
ous work. 

2.1.4. Counterbalancing of stimuli and construction of final stimulus lists 
In the ERP experiment, we created four counterbalanced lists. Each 

participant saw each context in the TargetScenarios and ControlScenarios 
just once. However, our counterbalancing scheme worked to ensure that 
they never saw the same critical word twice; that is, if a participant saw a 
critical word in a WithCompetitor or NoCompetitor context, they saw a 
different critical word in the ControlScenario for that item. In addition, 
participants did not see a WithCompetitor or NoCompetitor trial and its 
corresponding ControlScenario in the same half of the experiment. Pre-
sentation order was counterbalanced across participants, and partici-
pants were randomly assigned to one of these four lists. 

2.2. Participants 

We report data from 32 native English speakers who were recruited 
from Tufts University and the surrounding community. Fifteen further 
participants were tested but were subsequently excluded because of 
excessive noise in the ERP recording (see Data Preprocessing for cutoff 
criteria).7 The final set of participants were between the ages of 18 and 
35 (Mean age = 24.0; SD: 4.1). All were right-handed and had normal or 
corrected-to-normal vision. All participants reported having no signifi-
cant exposure to any language other than English before the age of 5, no 
history of neurological disorder(s), and no current use of psychoactive 
medication. All participants provided written informed consent and 
were paid at a rate of $15 per hour for their time. All protocols were 
approved by Institutional Review Board. 

2.2.1. Stimulus presentation 
Participants sat in a comfortable chair in a dimly lit room approxi-

mately 150 cm from the LCD computer monitor. They were asked to 
minimize muscle activity, eye movements, and blinking, particularly 
while reading the sentences. Stimuli were presented word-by-word 
using PsychoPy 1.83 software (Peirce, 2007). Each word was pre-
sented in a white Arial font on a black background, with 3 characters 
covering approximately 1 degree of visual angle. Each trial began with 
the prompt “READY?” in green font presented at the center of the screen, 
and the participant pressed a button to advance. The first two sentences 
of each context appeared in full, separated by a button press. After 
participants read the second sentence, a fixation marker (“++++”) 
appeared for 750 ms before the third sentence appeared, one word at a 
time, in the center of the screen (450 ms word duration, 100 ms inter- 
stimulus interval). 

In 128 trials, a yes/no comprehension question appeared immedi-
ately after the third sentence. These sentences often required readers to 
draw inferences based on the entire scenario, and they never referred 
specifically to the critical words. Their purpose was to encourage par-
ticipants to attend to and deeply comprehend the scenarios. 

Within each half of the experiment, the order of item presentation 
was randomized individually for each participant. Trials were presented 
in blocks of 30 items, which generally took 8–10 min, with a break 
between each block. Prior to seeing the experimental trials, participants 
saw 12 practice items with a similar structure to the experimental items. 

2.2.2. ERP acquisition and preprocessing 
We recorded ERPs using the BioSemi ActiveTwo EEG system with 

ActiView v7.05 EEG acquisition software (http://www.biosemi.com/). 
We recorded from 32 active Ag/AgCl electrodes in an elastic cap placed 
according to a modified international 10–20 system. Additional elec-
trodes were placed below the left eye and beside the right eye to monitor 
for blinks and eye movements, as well on each mastoid to serve as 
reference. The EEG signal was amplified, digitally filtered online with 
the Biosemi Active-Two acquisition system using a low pass 5th order 
sinc response filter with a half-power cutoff at 104 Hz, and continuously 
sampled at 512 Hz. 

Data was processed using the EEGLAB (Delorme & Makeig, 2004) 
and ERPLAB (Lopez-Calderon & Luck, 2014) toolboxes in MATLAB. EEG 
channels were referenced offline to the average of the left and right 
mastoid channels. A 2nd order Butterworth IIR filter with a half- 
amplitude high pass cutoff of 0.1 Hz was applied offline. The ERP was 
then segmented into epochs spanning from –300 ms to 900 ms, time- 
locked to the critical word. Only trials free from ocular, muscular, and 
electrical artifacts were included in analysis, as determined by pre-
processing routines from the EEGLAB and ERPLAB toolboxes using 
participant-specific artifact detection thresholds, combined with manual 
inspection. To be included in the analysis, participants had to have at 
least 15 artifact-free trials per condition, and at least 160 artifact-free 
trials overall (across the 8 conditions). On average, 18% of trials were 
rejected for artifacts for the included participants, and artifact rejection 
rates did not different significantly across the eight conditions, F(7,255) 
= 0.58, p = .77. 

2.2.3. ERP statistical analysis 
We extracted single trial artifact-free ERP data, using a baseline of 

− 300 to 0 ms, by averaging across electrode sites and time windows in 
two spatiotemporal regions of interest, which were selected a priori, 
based on previous studies using a similar design (Brothers, Wlotko, et al., 
2020; Kuperberg et al., 2020). The N400 was operationalized as the 
average voltage between 300 and 500 ms across five central electrode 
sites (Cz, CPz, C3/4, CP1/2). The late frontal positivity was operation-
alized as the average voltage between 600 and 900 ms across five pre-
frontal electrode sites (FPz, FP1/2, AF3/4). 

We analyzed these trial-level data using a series of linear mixed- 
effects regression models, which allowed us to look for effects of cate-
gorical predictors as well as continuous item-level predictors. This 
random effect for items refers to contexts (not individual target words). 
Thus, all trials that use the same introductory scenarios (and their 
control contexts) have the same item label. 

All regression analyses were conducted in R (R Core Team, 2022), 
using the lme4 package version 1.1–31 (Bates, Mächler, Bolker, & 
Walker, 2015) and lmerTest version 3.1–3 (Kuznetsova, Brockhoff, & 
Christensen, 2017). Following Barr, Levy, Scheepers, and Tily (2013), all 
regression analyses included the maximal random effects structures 
justified by the design both by subjects and by items. Random effect 
correlations were included by default. However, if we encountered is-
sues with model convergence or singular fits, we removed these corre-
lations. If this step did not resolve the issues, we continued to simply the 
random effects structure until reaching convergence without singular 
fits. 

Table 2 
Mean plausibility ratings for all conditions in the present study and those from 
Kuperberg et al., 2020 (KBW20) and Greene et al., 2020 (GBWNK20).  

Experiment Condition Plausibility 

Present study WithCompetitor Expected (A1) 6.66 
Present study WithCompetitor SecondBest (A2) 6.45 
Present study NoCompetitor Expected (A3) 6.55 
Present study NoCompetitor ZeroCloze (A4) 5.10 
Present study ControlScenario for A1 (B1) 5.55 
Present study ControlScenario for A2 (B2) 5.35 
Present study ControlScenario for A3 (B3) 5.20 
Present study ControlScenario for A4 (B4) 4.84 
KBW20 Expected 6.57 
KBW20 Unexpected (plausible) 5.29 
GBWNK20 Semi-implausible (no selection restriction violations) 2.89 
KBW20 Anomalous (selection restriction violations) 1.89  

7 This relatively high exclusion rate was because data were collected on a 
new high impedance system, and in these participants, we used minimal scalp 
abrasion prior to data collection. 
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For the analyses designed to test the friendly pre-activation account 
(Models 3 and 4), we calculated the semantic relatedness between the 
lower and higher probability words in all of our TargetScenarios. Spe-
cifically, we calculated the semantic relatedness (1 – cosine distance) on 
an item-by-item basis between the WithCompetitor SecondBest (A2) and 
the WithCompetitor Expected (A1) words, and between the NoCompetitor 
ZeroCloze (A4) and NoCompetitor Expected (A3) words. The semantic 
vectors used for these computations were obtained using a predictive 
Continuous Bag of Words model (see Mandera, Keuleers, & Brysbaert, 
2017; http://meshugga.ugent.be/snaut-english, 300 dimensions, win-
dow size = 6). 

We also conducted two additional analyses that are only reported in 
the Supplementary Materials/OSF. First, we conducted a series of 
Bayesian analyses. This is because, to foreshadow our findings, we 
report a series of null main effects and interactions that are critical to 
distinguishing the theoretical accounts under discussion. For these 
supplementary analyses, we calculated the Bayes Factor (BF01) to 
quantify the evidence in favor or against these null findings. Second, to 
explore the possibility of other late ERP effects related to misprediction 
(e.g. a left frontally distributed negativity described in Wlotko and 
Federmeier’s, 2012), which might occur outside our spatiotemporal 
regions of interest, we implemented a series of Mass Univariate analyses 
across all time points from 600 to 900 ms and all electrode sites (except 
for temporal sites), correcting for multiple comparisons using a cluster- 
based approach. 

3. Results 

3.1. Behavioral results 

Comprehension question accuracy across all conditions was 91% (on 
average), suggesting that readers were attending carefully to the 
discourse contexts. 

3.2. ERP results 

In Fig. 1, we show grand-average ERPs produced by the With-
Competitor Expected (A1) and SecondBest (A2) critical words in the Tar-
getScenarios, along with the collapsed grand-averages produced by the 
same critical words in the ControlScenarios (B1–B2). Between 300 and 
500 ms, the WithCompetitor Expected critical words elicited the smallest 
N400 responses; the WithCompetitor SecondBest critical words, which, on 
average had moderate cloze probabilities, produced a larger N400 re-
sponses, and the ControlScenario continuations, which, on average, had 
low cloze probabilities, produced the largest N400 response. Beyond the 
N400 time-window, between 600 and 900 ms, the WithCompetitor Sec-
ondBest words appeared to produce a slightly larger positivity at frontal 
sites than the critical words in the ControlScenarios. 

In Fig. 2, we show grand-average ERPs from the NoCompetitor Ex-
pected (A3) and ZeroCloze (A4) conditions, as well as ERPs produced by 
the same critical words appearing in the ControlScenarios. Here, the 
critical words in the two unexpected conditions (ZeroCloze, Con-
trolScenarios) had similarly low cloze probabilities, and produced a 
larger N400 than the NoCompetitor Expected critical words. Beyond the 
N400 time-window, there again appeared to be a slightly larger posi-
tivity at frontal sites between 600 and 900 ms to the NoCompetitor Zer-
oCloze words relative to the critical words in the ControlScenarios. 

ERP plots for all conditions individually at all electrodes sites and all 
time points are included in Supplementary Materials. 

It is important to note that although there were clear differences 
between conditions in the mean cloze probability of the critical words, 
which was reflected by the differences in N400 shown in Figs. 1 and 2, 
there was considerable variability in cloze values within each of these 
conditions. Indeed, several conditions actually overlapped in their 
ranges of cloze probabilities (see Methods). For example, the range of 
top-1 cloze probabilities for critical words in the WithCompetitor 

Fig. 1. Grand-average event-related potentials, time-locked to the onset of 
Expected and SecondBest critical words in the WithCompetitor contexts, and to 
the same critical words appearing the ControlScenarios. 

Fig. 2. Grand-average event-related potentials, time-locked to the onset of 
Expected and ZeroCloze critical words in the NoCompetitor contexts, and to the 
same critical words appearing the ControlScenarios. 
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SecondBest condition was 0–36%, which overlapped with the ranges in 
the WithCompetitor Expected (36–92%), NoCompetitor Expected 
(33.3–88%), NoCompetitor ZeroCloze (0–1.9%) conditions, as well as 
with the range of critical words in the ControlScenarios (range across 
B1–B4, 0–36%). Therefore, to test the divergent predictions made by the 
competitive pre-activation, independent pre-activation, and friendly pre- 
activation accounts, we used condition labels as categorical predictors 
(where relevant), while controlling for item-specific cloze probability as 
a continuous predictor variable.8 This enabled us to address three sets of 
questions. 

3.3. Question 1: Competitive or independent pre-activation? Evidence 
from the N400 

We began by asking whether there was any evidence of competitive 
pre-activation. This account predicts that in contexts with more than one 
likely continuation, there should be some degree of mutual inhibition 
between pre-activated alternatives prior to the incoming word becoming 
available. For example, in the WithCompetitor context from Table 1, the 
pre-activated lexico-semantic representations, <hearts> and 
<flowers>, should inhibit one another during the prediction phase, 
resulting in less facilitation and a larger N400 than one would expect 
(based only on cloze probability) to the incoming SecondBest and Ex-
pected critical words. In contrast, the independent pre-activation account 
predicts that the amplitude of the N400 evoked by these words should 
depend solely on their cloze probabilities, regardless of the presence of a 
co-activated alternative. We tested these divergent predictions with 
Models 1 and 2. 

3.3.1. Model 1: Does competitive pre-activation result in an increased N400 
to SecondBest words? 

In Model 1, we focused on the N400 in response to the With-
Competitor Expected (A1), and WithCompetitor SecondBest (A2) critical 
words, while controlling for Item-specific cloze probability. In order to 
control for low-level lexical variables, we also included the N400 re-
sponses from the identical set of critical words appearing in their asso-
ciated ControlScenarios (B1 and B2, respectively). Thus, this model 
included fixed effects of Item-specific Cloze, Continuation Type (Ex-
pected = − 0.5, SecondBest = 0.5), Stimulus Group (TargetScenarios = 0.5, 
ControlScenarios = − 0.5), and an interaction between Continuation Type 
and Stimulus Group. 

If there is competitive pre-activation in the WithCompetitor contexts, 
then we should see larger N400 responses to the SecondBest words, 
relative to Expected words, after controlling for item-specific cloze 
probability. In contrast, we should see no such difference between the 
N400 produced by the same critical words appearing in their Con-
trolScenarios. In other words, we should see an interaction between 
Continuation Type and Stimulus Group. 

Our results showed a clear main effect of Item-specific Cloze on the 
N400 (b = 3.58, t = 2.47, p = .014). Critically, however, we saw no 
significant interaction between Continuation Type and Stimulus Group 
(see Table 3). These findings suggest that all critical words in our study 
evoked N400 amplitudes in proportion to their cloze probabilities, with 
no penalties for being in the presence of a pre-activated alternative. 

3.3.2. Model 2: Does competitive pre-activation result in an increased N400 
to Expected words? 

In Model 2, we compared the N400 responses to the WithCompetitor 
Expected (A1) and the NoCompetitor Expected (A3) critical words. Again, 
to control for lexical variables, we included the N400 responses from the 
identical critical words appearing in their associated ControlScenarios 
(B1, B3). In this model, we included fixed effects of Item-specific Cloze, 
Contextual Competition (WithCompetitor = 0.5, NoCompetitor = − 0.5), 
Stimulus Group (TargetScenario = 0.5, ControlScenario = − 0.5), and an 
interaction between Contextual Competition and Stimulus Group. 

If Expected words in WithCompetitor contexts were slightly inhibited 
by their SecondBest competitors during the pre-activation phase, then 
they should produce slightly larger N400s than the cloze-matched Ex-
pected words in the NoCompetitor contexts. As in Model 1, we would 
expect to see no such differences between the same critical words in 
their associated ControlScenarios. In other words, there should be an 
interaction between Contextual Competition and Stimulus Group (see 
Table 4). 

In this model, however, we found only a main effect of Item-specific 
Cloze on the N400 (b = 3.51, t = 2.87, p = .005). There were no other 
significant main effects, nor interactions. Taken together with Model 1, 
these results fail to provide evidence for the competitive pre-activation 
account; that is, the degree of pre-activation for a given word did not 
appear to be sensitive to the presence or absence of a pre-activated 
alternative. 

3.4. Question 2: Friendly pre-activation due to shared semantic features: 
Evidence from the N400 

Our second aim was to determine whether there is any evidence for 
friendly pre-activation as a result of overlap between the semantic fea-
tures associated with the observed lower probability critical word and 
an unobserved higher probability pre-activated alternative. In contrast 
to the competitive pre-activation account, which predicted less facilitation 
and a larger N400 than that one would expect based on cloze probability 
alone, the friendly pre-activation account predicts more facilitation and a 
smaller N400 than one would expect based only on cloze. Moreover, this 
account also predicts that the reduction in the N400 should be graded 
with increasing levels of relatedness between the critical word and its 
unobserved, higher probability alternative. To address this question, we 

Table 3 
WithCompetitor Expected, SecondBest and ControlScenario conditions.  

Model 1 (N400) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 3.58 1.45 2.47 .01 * 
Continuation Type − 0.18 0.41 − 0.44 .66 
Stimulus Group 0.71 0.60 1.18 .24 
Continuation Type × Stimulus Group − 0.50 0.77 − 0.65 .52 
Random Effects Structure: (1 + continuation*stimulus_group || subject) + (1 +

stimulus_group + continuation:stimulus_group || item)  

8 For all analyses that included the WithCompetitor contexts, we also carried 
out the same set of analyses with an independent measure of lexical probability, 
taken from the large language model, GPT-3 (Brown et al., 2020). When we 
estimate lexical probability via cloze responses from multiple individuals, we 
assume that each individual response represents a noisy sample from an in-
ternal probability distribution of representation within an individual brain, and 
so multiple averaged guesses should provide a more precise estimation of these 
probabilistic representations than responses from a single individual – the so- 
called “wisdom of the crowd” effect (Galton, 1907; Stroop, 1932). Thus, if 
two words in two different contexts are matched in cloze probability, we tend to 
assume that their levels of pre-activation are also matched. However, it is 
possible that this assumption may not hold for the WithCompetitor contexts. This 
is because competition amongst pre-activated representations could, in princi-
ple, directly influence the probability with which these items are produced 
during the cloze task. For example, inhibition from the more probable alter-
native may reduce pre-activation of the SecondBest representation, making it 
less likely that this SecondBest continuation is produced than if it appeared in a 
NoCompetitor context. If this was the case, then it could lead to a systematic 
underestimation of the lexical probability of these SecondBest items, which 
would, in turn, reduce the likelihood of detecting evidence of competitive pre- 
activation during language comprehension. Our use of an independent corpus- 
based measure of lexical probability helped rule out this potential confound: 
For all tests of theoretical interest, we observed the same pattern of results using 
these GPT-3 estimates (see Supplementary Materials/OSF for results of these 
analyses in the annotated R script). 
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first assessed the effects of friendly pre-activation in all lower proba-
bility continuations (Model 3). We then restricted our analyses to the 
subset of SecondBest continuations in the WithCompetitor contexts 
(Models 4 and 5). 

3.4.1. Model 3: For all lower probability words, is there a graded effect of 
friendly pre-activation? 

In Model 3, we included the N400 responses to all lower probability 
continuations in contexts with a potentially pre-activated higher prob-
ability alternative—namely, the NoCompetitor ZeroCloze and the With-
Competitor SecondBest conditions. According to the friendly pre-activation 
account, the mere pre-activation of a higher probability alternative 
should provide facilitation on the N400 evoked by a lower probability 
continuation, but only if the two words are semantically related to one 
another. Thus, if there is friendly pre-activation, the N400 produced by 
lower probability continuations should become smaller (than predicted 
by cloze) as semantic relatedness increases. 

To test this hypothesis, Model 3 included a continuous fixed effect of 
Semantic Relatedness, which was calculated, item-by-item, between 
each critical word and its higher probability competitor (see Methods). 
The model also included a fixed effect of Item-specific Cloze to control 
for differences between the two lower probability conditions. 

Consistent with a friendly pre-activation account, we observed a sig-
nificant effect of Semantic Relatedness such that the N400 produced by 
lower probability continuations (ZeroCloze, SecondBest) decreased as 
semantic relatedness increased (see Table 5; b = 6.01, t = 3.55, p <
.001).9 In Fig. 3 (left panel), we show the averaged N400 responses for 
each lower probability word as a function of its semantic relatedness 
with its higher probability alternative. Consistent with the model re-
sults, the amplitude of the N400 increases with increasing similarity 
between the critical word and its higher probability alternative. 

To further visualize this effect, we used a median split to subdivide 
the trials into those that were semantically related to a higher proba-
bility continuation (Mean semantic relatedness: 0.44; SD: 0.10) and those 
that were semantically unrelated to a higher probability continuation 
(Mean semantic relatedness: 0.19; SD: 0.07). We then computed grand- 
average waveforms for each of these conditions across central elec-
trode sites. Fig. 3 (right panel) shows these waveforms, together with the 
waveforms produced by Expected critical words (averaged across con-
ditions A1 and A3) and critical words in the ControlScenarios (averaged 
across conditions B2 and B4). As expected, we found graded N400s such 
that Expected words evoked the smallest responses, followed by a larger 
N400 to critical words that were Related to a higher probability alter-
native, and the largest N400s to critical words that were Unrelated to a 
higher probability alternative, or that appeared in the ControlScenarios. 
Taken together, these findings suggest that, instead of reducing the 
degree of lexico-semantic facilitation, the pre-activation of a higher 

probability alternative can further facilitate the processing of a lower 
probability critical word. 

3.4.2. Model 4: Does friendly pre-activation also enhance facilitation on 
SecondBest critical words in WithCompetitor contexts? 

In Model 3, we grouped together responses to all lower probability 
continuations in contexts with a potentially pre-activated alternative, 
including zero-cloze continuations where previous work has already 
demonstrated friendly pre-activation (DeLong & Kutas, 2020; Federmeier 
& Kutas, 1999; Kutas & Hillyard, 1984; Thornhill & Van Petten, 2012). 
Here, in Model 4, we focused solely on the N400 produced by the 
WithCompetitor SecondBest continuations, which have not been exam-
ined in previous studies. This provided a more direct test of whether, in 
these WithCompetitor contexts, SecondBest critical words receive friendly 
pre-activation from their higher probability alternatives, which, as dis-
cussed earlier, could have potentially acted as competitors. Similar to 
Model 3, this model included fixed effects of Semantic Relatedness and 
Item-specific Cloze (see Table 6). We again found a significant effect of 
Semantic Relatedness on the N400 on the WithCompetitor SecondBest 
continuations (b = 7.37, t = 2.87, p = .006), when controlling for cloze 
probability. 

Table 4 
WithCompetitor Expected, NoCompetitor Expected, and ControlScenario 
conditions.  

Model 2 (N400) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 3.51 1.22 2.87 .005 * 
Contextual Competition 0.41 0.28 1.45 .15 
Stimulus Group 0.10 0.71 0.14 .89 
Contextual Competition × Stimulus Group 0.75 0.58 1.30 .20 
Random Effects Structure: (1 + cloze + contextual_competition:stimulus_group || 

subject) + (1 + cloze + stimulus_group || item)  

Table 5 
ZeroCloze and SecondBest continuations.  

Model 3 (N400) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 2.78 2.52 1.10 .28 
Semantic Relatedness 6.01 1.69 3.55 < .001 * 
Random Effects Structure: (1 + cloze + semantic_relatedness | subject) + (1 | item)  

Fig. 3. Left: The averaged N400 response (300–500 ms) for each lower prob-
ability critical word in conditions A2 (WithCompetitor SecondBest) and A4 
(NoCompetitor ZeroCloze) plotted as a function of its semantic relatedness to its 
more probable alternative (taken from the WithCompetitor Expected condition, 
A1, and the NoCompetitor Expected condition, A3). Right: Grand-averaged ERPs 
within the N400 spatiotemporal region in response to (a) critical words in the 
ControlScenarios (averaged across conditions B2 and B4, blue dotted), (b) crit-
ical words in conditions A2 and A4 that were semantically unrelated to a higher 
probability alternative (Unrelated to Expected, red), (c) critical words in con-
ditions A2 and A4 that were semantically related to a higher probability pre-
dicted alternative (Related to Expected, orange), and (d) Expected critical words 
(averaged across conditions A1 and A3, black). 

Table 6 
WithCompetitor SecondBest only.  

Model 4 (N400) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 0.03 4.04 0.01 .99 
Semantic Relatedness 7.37 2.57 2.87 .006 * 
Random Effects Structure: (0 + cloze + semantic_relatedness || subject) + (1 | item)  

9 In Model 3, as well as in Model 4, which included only a subset of the non- 
modal continuations, there was no significant effect of Cloze, perhaps because 
of the relatively restricted range of cloze probability in these analyses. How-
ever, the fact that Semantic Relatedness predicted N400 amplitude, while 
controlling for cloze probability, supports the friendly pre-activation account. 
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3.4.3. Model 5: When minimizing friendly pre-activation, is there any 
evidence of a competition effect on SecondBest completions? 

As noted in the Introduction, the competitive pre-activation and 
friendly pre-activation accounts are not mutually exclusive. Thus, even 
though, as shown in Model 4, SecondBest critical words that were 
semantically related to a more expected continuation received more 
facilitation than one would expect based on their cloze probability, it 
remained possible that SecondBest critical words that were semantically 
unrelated to a more expected continuation might receive less facilitation 
than expected, as a result of competitive pre-activation (see Ness and 
Meltzer-Asscher, 2021a, for evidence during a speeded cloze task). On 
this account, one explanation for why we found no evidence of 
competitive pre-activation in Model 1 could be that any effects of 
competitive pre-activation were outweighed by friendly pre-activation. 

To explore this possibility, we further restricted our analysis to the 
subset of WithCompetitor items in which the Expected and SecondBest 
continuations were unrelated to one another. All trials were split into 
Related and Unrelated groups using a median split on Semantic Relat-
edness (Median = 0.39). We then selected the SecondBest words from 
these semantically Unrelated trials and paired them with their associated 
ControlScenarios. We then implemented another model with fixed effects 
of Stimulus Group (TargetScenarios = 0.5, ControlScenarios = − 0.5) and 
Item-specific Cloze as a control variable. If there was any evidence of 
competitive pre-activation on the N400, we should see an effect of Stim-
ulus Group in this model. However, similar to the models above, we 
observed no such categorical effect of Stimulus Group; if anything the 
beta-weight for this model went in the opposite direction, with greater 
facilitation on unrelated SecondBest words in the WithCompetitor con-
texts than when the same words appeared in the ControlScenarios (see 
Table 7). 

3.5. Question 3. Late costs of suppressing higher probability alternatives: 
Evidence from the late frontal positivity 

Our final aim was to determine whether, in the WithCompetitor 
contexts, there was any evidence for costs associated with late inhibition 
when processing SecondBest versus Expected continuations. To address 
this question, we focused on the late frontal positivity, which has 
sometimes been interpreted as an index of inhibiting or suppressing an 
incorrect lexical prediction in order to successfully integrate an observed 
input into the unfolding context (Kutas, 1993; Ness & Meltzer-Asscher, 
2018). 

3.5.1. Model 6: Are there inhibitory costs on the late frontal positivity 
produced by SecondBest relative to Expected continuations in 
WithCompetitor contexts? 

Similar to Model 1 for the N400, Model 6 compared the late frontal 
positivities produced by WithCompetitor Expected (A1) and With-
Competitor SecondBest (A2) critical words, as well as the same critical 
words appearing in the ControlScenarios (B1 and B2, respectively), i.e., it 
included fixed effects of Item-specific Cloze, Continuation Type (Ex-
pected = − 0.5, SecondBest = 0.5), Stimulus Group (TargetScenarios = 0.5, 
ControlScenarios = − 0.5), and an interaction between Continuation Type 
and Stimulus Group. 

If late costs are incurred when comprehenders suppress/inhibit an 
incorrectly pre-activated alternative, then the SecondBest completions 
should produce a larger frontal positivity than the Expected continua-
tions, and there should be no such differences between the same critical 
words appearing in the ControlScenarios, i.e., a there should be an 
interaction between Continuation Type and Stimulus Group. However, 
our results did not indicate any such interaction (see Table 8). Thus, in 
WithCompetitor contexts, there was no evidence of any late penalty in 
processing lower probability words in the presence of a higher proba-
bility alternative. 

3.5.2. Models 7 and 8: Are there continuous effects of Constraint on the late 
frontal positivities to lower probability critical words? 

One reason why some researchers have suggested that the late 
frontal positivity reflects late costs associated with suppressing an 
incorrectly predicted alternative is that this component is sometimes 
larger in response to zero-cloze words appearing in high constraint 
contexts, which constrain for a single alternative, relative to zero-cloze 
words appearing in low constraint contexts that do not constrain for any 
specific word (e.g. Federmeier et al., 2007; Kuperberg et al., 2020). 

In light of these findings, we attempted to replicate (and extend) 
these previous findings by investigating how the late frontal positivity to 
lower probability continuations varies as a function of Contextual 
Constraint in the present study (Models 7 and 8). In comparison with 
previous studies, which have contrasted ERPs to zero-cloze words 
appearing in high constraint versus low constraint contexts, the present 
study included discourse contexts with a fairly wide range of constraint 
across conditions. Thus, even though, the average constraint of the 
contexts in the ControlScenarios was lower (Mean constraint = 19.5%, SD 
= 7.8%) than that of the TargetScenarios (Mean constraint = 59.1%, SD =
14.8%), there was still a considerable amount of variability in Contex-
tual Constraint within both these stimulus groups (ControlScenarios 
Range = 8–52%, TargetScenarios Range = 33.3–92%). We therefore 
decided to combine these two conditions and use a continuous item- 
level measure of constraint, rather than categorical measure of 
constraint, for these analyses. 

In Model 7, we examined the effect of Item-specific Constraint on the 
late frontal positivity produced by zero-cloze items (analogous to what 
has been examined in previous studies). In the present study, this 
included all items in the NoCompetitor ZeroCloze (A4) and their associ-
ated ControlScenarios (B4). This model included fixed effects of Item- 
specific Cloze and Item-specific Constraint (see Table 9). In this anal-
ysis, we found that the effect of Item-specific Constraint trended toward 
significance in the predicted direction (b = 1.46, t = 1.90, p = .06). 

Because of this near replication, and given the interest of an anon-
ymous reviewer, we then ran another model (Model 8) with the same 
predictors to explore whether there was an influence of Item-specific 
Constraint on the late frontal positivities produced by the With-
Competitor SecondBest critical words (A2) and their corresponding con-
trols (B2). Results indicated a significant effect of Item-specific 
Constraint (see Table 10) such that late frontal positivities became larger 
as the constraint of the context increased (b = 2.46, t = 2.51, p = .014). 

Table 7 
WithCompetitor SecondBest continuations from semantically Unrelated trials.  

Model 5 (N400) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze − 4.29 4.39 − 0.98 .33 
Stimulus Group 1.44 0.82 1.75 .09 
Random Effects Structure: (1 + cloze + stimulus_group || subject) + (1 +

stimulus_group || item)  

Table 8 
WithCompetitor Expected, WithCompetitor SecondBest, and ControlScenario 
conditions.  

Model 6 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze − 1.49 1.47 − 1.02 .31 
Continuation Type 0.45 0.40 1.12 .26 
Stimulus Group 0.79 0.57 1.37 .17 
Continuation Type × Stimulus Group − 0.53 0.83 − 0.63 .53 
Random Effects Structure: (1 + cloze + stimulus_group || subject) + (0 + cloze +

continuation_type:stimulus_group || item)  
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The results from these two analyses (Models 7 and 8), taken together 
with the prior literature, suggest that lower probability continuations 
show larger late frontal positivities in higher relative to lower constraint 
contexts.10 We discuss this finding further in the Discussion. 

4. Discussion 

It is well-established that linguistic predictions are probabilistic, and 
that the processing of incoming words is facilitated in a graded fashion 
to the degree that they have been pre-activated by the prior context. This 
raises an obvious question: Are there “costs” associated with generating 
lexico-semantic predictions during language comprehension? 

To address this question, most researchers have focused on the spe-
cific situation in which a plausible but lexically unpredictable target 
word violates a strong lexical prediction that is generated in a highly 
constraining context (e.g. “He bought her a pearl necklace for her… 
collection”). It has been hypothesized that such prediction violations 
might incur processing costs as a result of competition between the 
bottom-up input and the incorrect prediction. To test this hypothesis, 
researchers have contrasted these prediction-violating-target words 
with target words that are equally unpredictable, but that do not violate 
a strong prediction (e.g. “He looked worried because he might have broken 
his…collection”). 

ERP and behavioral studies examining this contrast have found no 
evidence of costs associated with violating strong predictions during 
lexico-semantic processing (ERP studies examining the N400: Kutas & 
Hillyard, 1984; Federmeier et al., 2007; Kuperberg et al., 2020; behav-
ioral studies: Frisson et al., 2017; Steen-Baker et al., 2017; Fischler & 
Bloom, 1979, 1985; Schwanenflugel & Lacount, 1988; see also Wong, 
Veldre, & Andrews, 2022). However, some ERP studies have shown that, 
in plausible sentences, this contrast sometimes reveals a frontally- 
distributed positivity effect at a later stage of processing (e.g. Feder-
meier et al., 2007; Kuperberg et al., 2020). This effect has sometimes 
been interpreted as indexing later costs as a result of competition be-
tween the predicted word and the bottom-up input (Kutas, 1993; Ness & 
Meltzer-Asscher, 2018). 

In the present study, we ask a different question that has received far 
less attention in the literature: Are there any consequences of dis-
confirming a prior prediction in contexts that constrain for multiple 
possible candidates? 

In contrast to prediction violations on zero-cloze words, where any 
competition would begin only once the bottom-up input is encountered, 
in these WithCompetitor contexts, the pre-activated alternative candi-
dates could begin to compete with one another before the onset of the 
target word. This would lead to relative costs in processing the bottom-up 
input; that is, even if the target is partially predictable because it con-
firms one of the pre-activated alternatives, it may still be more difficult 
to process than if there had been no pre-activated competitor. These 
relative costs could be incurred during the initial stages of lexico- 
semantic processing, predicting a larger N400 than would be expected 
based only on cloze probability. Alternatively, they might manifest at a 
later stage of processing on the late frontal positivity. 

In a naturalistic eye-tracking study, Luke and Christianson (2016) 
showed (a) that such “high competition” contexts followed by “second 
best” continuations are encountered frequently in natural texts, but (b) 
when these texts are read for comprehension, the second-best continu-
ations incurred no behavioral processing costs on either early or late 
reading time measures. Instead, these authors found evidence of 
increased facilitation when less predictable words were semantically 
related to a higher probability alternative. 

In the present study, we conceptually replicated Luke and Chris-
tianson’s findings using a different method — ERPs — and using a 
controlled experimental design, which allowed us to control for poten-
tial lexical confounds. Contrary to the predictions of a competitive pre- 
activation account, we found that in WithCompetitor contexts, the N400s 
produced by SecondBest and Expected continuations were no larger than 
would be predicted given their cloze probabilities alone. Instead, we 
found evidence for friendly pre-activation on the N400: Extending pre-
vious ERP findings showing that zero-cloze words that are semantically 
related to a predicted continuation produce facilitation on the N400 (e. 
g. Federmeier & Kutas, 1999), we found that when a SecondBest critical 
word was semantically related to the higher probability alternative, it 
produced a smaller N400 than expected given its cloze probability (i.e. 
enhanced facilitation). Finally, we found no evidence for differences in 
the responses produced by the SecondBest and the Expected continua-
tions on a later frontal positivity, even though this component was 
influenced by the constraint of the prior context. 

These findings have important theoretical implications for under-
standing the mechanisms underlying probabilistic prediction during 
language comprehension. In the remainder of this discussion, we first 
consider the lack of evidence for competitive effects on the N400 in the 
WithCompetitor contexts. We then consider the lack of evidence for 
competitive effects on the late frontal positivity and consider reasons 
why this late effect was nonetheless sensitive to contextual constraint. 
Third, we discuss how our findings extend previous work that has 
demonstrated the role of friendly pre-activation on the processing of zero- 
cloze words. Finally, we discuss the computational principles of a par-
allel, interactive framework of predictive processing that can accom-
modate these findings, and how these principles might be implemented 
by a biologically plausible architecture and algorithm known as pre-
dictive coding. 

4.1. No evidence for effects of competitive pre-activation on the N400 

During language comprehension, prediction is often viewed as a top- 
down process in which comprehenders use their current high-level 
interpretation to pre-activate lower-level lexico-semantic representa-
tions of upcoming words. At face value, this top-down process is similar 
in many respects to language production, in which producers use an 
intended high-level message to activate lower-level lexical representa-
tions for later articulation. This has led some researchers to propose that 
top-down prediction during language comprehension routinely employs 
the same mechanisms that are employed during language production (e. 
g. Fitz & Chang, 2019; Pickering & Garrod, 2013; Van Petten & Luka, 
2012). 

Table 9 
ZeroCloze and their associated ControlScenarios.  

Model 7 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 9.96 19.09 0.52 .60 
Item-specific Constraint 1.46 0.77 1.90 .06 
Random Effects Structure: (1 + cloze + constraint || subject) + (1 | item)  

Table 10 
SecondBest and their associated ControlScenarios.  

Model 8 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze − 1.16 2.14 − 0.54 .59 
Item-specific Constraint 2.46 0.98 2.51 .014 * 
Random Effects Structure: (1 + constraint || subject) + (0 + constraint || item)  

10 For completeness, we also ran identical models to Models 7–8 on the N400 
response. Consistent with the prior literature, we did not see any effects of 
constraint on the N400 to the NoCompetitor ZeroCloze continuations (b = 0.40, t 
= 0.49, p = .62) nor the WithCompetitor SecondBest continuations (b = 1.93, t =
1.71, p = .09). 
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In testing this theory, a critical factor to consider is that, to produce 
language, there is continuous top-down pressure to select a single word (e. 
g. Levelt, 2001). One well-known mechanism of top-down lexical selec-
tion during language production is mutual competitive inhibition in which 
co-activated lexical representations each exert lateral inhibition on one 
another until a single candidate is selected. This type of “winner-takes-all” 
selection mechanism is a fundamental characteristic of classic Interactive 
Activation and Competition (IAC) models that have been used to model 
language production (e.g. Chen & Mirman, 2012). For example, in a 
recent study, Ness and Meltzer-Asscher (2021a) used an IAC model (Chen 
& Mirman, 2012) to simulate production times in a speeded cloze task. 
These authors showed that competitive inhibition between unrelated pre- 
activated lexical representations could explain the longer-than-expected 
times to produce upcoming words (see also Nakamura & Phillips, 2022). 

To the extent that the same IAC principles have been proposed to 
underlie aspects of language comprehension (e.g. McClelland & Rumel-
hart, 1981; McClelland & Elman, 1986; see also Spivey & Tanenhaus, 
1998; MacDonald et al., 1994), then this would predict that the presence 
of a competing alternative during the predictive phase of language 
comprehension should reduce lexico-semantic facilitation on incoming 
words when they become available. This would result in larger N400s on 
critical words in WithCompetitor contexts than one might expect based on 
cloze probability alone. This reduced facilitation should be particularly 
apparent on SecondBest continuations (e.g. “flowers”) because, in IAC 
models, lateral inhibition scales non-linearly, such that more strongly 
activated lexical units exert the greatest inhibitory pressure. Specifically, 
during the pre-activation phase, the more weakly pre-activated second- 
best alternative (e.g. <flowers>) would receive strong inhibition from the 
more strongly pre-activated alternative (e.g. <hearts>), and so when this 
SecondBest input (“flowers”) actually appears, it should be relatively more 
difficult to access its lexico-semantic representation. In addition, one 
might also expect to see some effect of top-down competitive inhibition on 
the Expected words in the WithCompetitor contexts (“hearts”) compared to 
Expected words in NoCompetitor contexts with the same cloze probability, 
although this inhibition effect should be smaller in magnitude. 

However, we found no evidence for these types of competitive effects 
in the WithCompetitor contexts: First, the SecondBest words produced 
N400s in proportion to their cloze probabilities, with no additional ef-
fect of Continuation Type (Expected vs. SecondBest). Second, the Expected 
words in WithCompetitor context had comparable N400s to the Expected 
words in NoCompetitor contexts. These findings therefore do not support 
the idea that mutual inhibition between multiple pre-activated candi-
dates influences subsequent lexico-semantic processing of incoming 
words between 300 and 500 ms. 

4.2. No evidence for late suppression costs to SecondBest versus Expected 
critical words on the late frontal positivity 

We also found no evidence for neural costs in processing SecondBest 
relative to Expected continuations at a later stage of processing, either on 
the late frontal positivity or on any other late ERP component (see 
Supplementary Material).11 This provides evidence against a late 

suppression account, which claims that in order to integrate a lower 
probability word into its prior context, it is necessary to suppress an 
alternative predicted (but unobserved) representation that remain 
active past the N400 time window (Kutas, 1993; Ness & Meltzer- 
Asscher, 2018). 

The original motivation for the late suppression account of the late 
frontal positivity was that this ERP component is sometimes larger to 
plausible zero-cloze words appearing in very high constraint versus low 
constraint contexts (e.g. Federmeier et al., 2007; Kuperberg et al., 2020; 
although this is not always the case, e.g. see Thornhill & Van Petten, 
2012; Zirnstein, van Hell, & Kroll, 2018). In the present study, we 
replicate and extend this original finding by showing significant (and 
near significant) graded effects of Item-specific Constraint on the late 
frontal positivity (see Models 7 and 8). Therefore, our findings raise the 
question of what neurocognitive processes the late frontal positivity does 
index, and why this component is sometimes sensitive to contextual 
constraint, but not to lexical-level inhibition. 

In recent work, we have argued that, rather than indexing processes 
that operate over individual lexical items (such as lexical suppression), 
the late frontal positivity indexes processes related to the successful 
updating of the comprehender’s higher-level situation model upon 
encountering new unpredicted input (Brothers, Greene, & Kuperberg, 
2020; Brothers, Wlotko, et al., 2020; Kuperberg et al., 2020). On this 
account, the reason why the late frontal positivity is often enhanced on 
unexpected plausible words that violate a higher probability prediction is 
that these types of unexpected words tend to trigger larger updates/ 
shifts of the situation model (by retrieving new schema-relevant infor-
mation from long-term memory). For example, when reading “He bought 
her a pearl necklace for her collection”, the final word (collection) may 
produce a large late frontal positivity because the comprehender up-
dates the situation model by inferring new schema-relevant events that 
are related to the collection of jewelry. 

Critically, this account of the late frontal positivity implies that the 
presence of a strong lexical-level competitor is neither necessary nor 
sufficient to induce updates of the situation model and produce this 
effect. In the present study, this would explain why the WithCompetitor 
SecondBest completions (e.g. “flowers”) did not produce a larger late 
frontal positivity than the WithCompetitor Expected completions. We 
suggest that both these critical words produced some degree of update in 
the comprehender’s situation model, which was, on average, greater 
than that produced by critical words in the ControlScenarios. 

This situation model updating account can also explain why the late 
frontal positivity effect is not produced by unexpected words that violate 
strong predictions in very short sentences where comprehenders are 
unlikely to engage in building a situation model (e.g. “James unlocked 
the…[door]/laptop”, see Brothers, Wlotko, et al., 2020, Experiment 1). In 
addition, it can explain why, relative to expected words, a robust late 
positivity is sometimes produced by unexpected words appearing in low 
constraint contexts (e.g. Chow, Lau, Wang, & Phillips, 2018; Davenport 
& Coulson, 2011; Freunberger & Roehm, 2016), sometimes with an 
amplitude that is, in fact, just as large as to high constraint unexpected 
continuations (e.g. Hubbard, Rommers, Jacobs, & Federmeier, 2019; 
Ng, Payne, Steen, Stine-Morrow, & Federmeier, 2017; Thornhill & Van 
Petten, 2012; Zirnstein et al., 2018). In these cases, both types of unex-
pected words may be informative enough to induce fairly large updates 
of the situation model (see Brothers, Greene, & Kuperberg, 2020). 

We emphasize, however, that the present study was not designed to 
directly test this situation model updating account of the late frontal 
positivity, and so it will be important for future studies to further explore 
the function role of this late frontal effect. 

4.3. Friendly pre-activation 

In contrast to the lack of evidence for competitive pre-activation, we 
did find clear evidence for friendly pre-activation on lexico-semantic 

11 Wlotko and Federmeier (2012) proposed that another ERP component 
might reflect late costs associated with competition: In an exploratory post-hoc 
analysis, these authors observed a left-lateralized frontal negativity in response 
to medium-high (75–90%) cloze probability words, particularly those with an 
alternative competing continuation. These authors speculated that this effect 
indexed working memory resources necessary to deal with multiple competing 
possibilities during lexical selection. We did not find any evidence of this effect, 
either in the analyses presented in this manuscript or in further analyses re-
ported in Supplementary Materials, despite the fact that our NoCompetitor Ex-
pected versus WithCompetitor Expected contrast closely resembled the contrast 
where Wlotko and Federmeier found their late left-lateralized frontal 
negativity. 
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processing. The N400 response produced by lower probability words 
was reduced when these words shared semantic features with a more 
strongly pre-activated alternative (bride – groom). This finding is 
consistent with previous ERP studies that have reported this type of 
“anticipatory semantic overlap effect” both on unexpected implausible 
words (DeLong et al., 2019; Federmeier & Kutas, 1999; Ito et al., 2016) 
as well as on unexpected zero-cloze plausible words (Thornhill & Van 
Petten, 2012; DeLong & Kutas, 2020; for consistent behavioral results, 
see Frisson et al., 2017, Experiment 2; Roland, Yun, Koenig, & Mauner, 
2012; Wong et al., 2022).12 

Importantly, by conceptually replicating Luke and Christianson 
(2016) behavioral findings in their natural corpus, our findings extend 
this previous ERP work in two ways: First, we show that the anticipatory 
effect of semantic relatedness on the N400 is graded, with a linear 
relationship between degree of semantic relatedness and degree of 
facilitation. Second, we demonstrate that this additional facilitation 
occurs on SecondBest continuations (with non-trivial cloze probabilities) 
that are encountered in WithCompetitor contexts. Unlike a zero-cloze 
word, which will receive facilitation from a higher-probability pre-
dicted alternative only after it is encountered, SecondBest completions 
are likely to have already received some pre-activation from the 
semantically related alternative before the onset of the bottom-up input 
(see below for further discussion). As discussed earlier, during this pre- 
activation phase, the higher probability alternative could have, in 
principle, acted as a competitor. Therefore, by showing that these higher 
probability alternatives can facilitate, rather than inhibit, subsequent 
lexico-semantic access, we provide important evidence that semantic 
overlap from alternative pre-activated items can support everyday lan-
guage processing. Indeed, as noted earlier, Luke and Christianson (2016) 
showed that such SecondBest continuations in WithCompetitor contexts 
occur frequently in natural language. 

We should note that finding an anticipatory semantic overlap effect 
on critical words in WithCompetitor contexts is compatible with some 
IAC architectures. For example, in Chen & Mirman’s IAC model (Chen & 
Mirman, 2012), in addition to receiving inhibitory lateral connections 
from other localist lexical items, each lexical item also receives cross- 
layer excitatory connections from distributed sets of semantic features. 
If two pre-activated candidates share semantic features, then this shared 
excitation can sometimes outweigh any mutual lexical-level inhibition. 
Evidence that this can impact language production comes from a recent 
study by Ness and Meltzer-Asscher (2021a), who carried out simulations 
using Chen and Mirman’s IAC model, and showed that the additional 
pre-activation received by an expected lexical unit that shared semantic 
features with its second best “competitor” was able to explain peoples’ 
faster response latencies to produce this word in a speeded cloze task. 

However, as discussed earlier, Ness and Meltzer-Asscher (2021a) 
also found that the mutual lateral inhibition between lexical units in the 
IAC model was able to explain why producers took longer to produce 
expected words the presence of an unrelated competitor. In the present 
study, however, we found no evidence that this type of mutual inhibition 
between pre-activated competitors influenced comprehension: Even 
when we considered only the subset of WithCompetitor contexts in which 
the SecondBest continuation was semantically unrelated to the Expected 
continuation (based on a median split), the N400 produced by 

SecondBest continuation was no larger than that produced by the same 
critical words in the ControlScenarios. 

Taken together, these findings provide strong evidence for friendly 
pre-activation, but no evidence for competitive pre-activation during lan-
guage comprehension. 

4.4. Explaining parallel, graded and friendly pre-activation within a 
hierarchical probabilistic generative framework 

In the sections above, we discussed how researchers have appealed to 
architectures such as IAC in which lateral inhibitory connections be-
tween lexical representations play a key role in inhibiting pre-activated 
competitors. These frameworks, however, are incompatible with our 
current findings, as we found no evidence that inhibition between pre- 
activated lexical competitors influences lexico-semantic processing 
during comprehension. In this section, we will argue that our findings 
can be better understood within a probabilistic generative framework of 
language processing (see Kuperberg & Jaeger, 2016 for an overview). 
We first discuss the computational principles of this framework at Marr’s 
first level of analysis (Marr, 1971), and consider how these principles 
can explain the present set of findings. We then consider how this 
framework could be implemented at the algorithmic level, highlighting 
predictive coding as a particularly promising architecture and algorithm 
for achieving this goal. 

4.5. Marr level 1: Probabilistic Inference: Explaining the bottom-up input 
and explaining away alternatives 

At the heart of all probabilistic generative frameworks is the gener-
ative model — an internal network of hierarchically organized knowl-
edge that encodes the agent’s probabilistic assumptions about how 
latent causes (also called hypotheses) cause or “generate” observations 
from the environment (see Griffiths, Chater, Kemp, Perfors, & Ten-
enbaum, 2010). At each level of representation, each hypothesis is held 
with a particular probability, referred to as a belief, and at any given 
time, an agent can hold multiple beliefs in parallel, which, together can 
be described as a probability distribution. When new input (evidence) 
becomes available from the environment, prior beliefs at each level of 
representation are updated through Bayes’s rule, with belief flowing 
dynamically up and down the hierarchical generative network until it 
settles on the latent causes that best “explain” the statistical structure of 
the input (Pearl, 1982). 

Within this probabilistic framework, the process of deep language 
comprehension can be understood as the process of inferring the high- 
level message that the producer intended to communicate from a 
sequence of linguistic inputs that unfold in real time. We will refer to this 
high-level interpretation as a situation model –– a representation of the 
set of events being communicated, including the referential, spatial, 
temporal, motivational and causal coherence relationships that link 
them (van Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998). We assume 
that this situation model lies at the top of the comprehender’s internal 
generative model, and that the network below it comprises all relevant 
information that is needed to infer this interpretation. This network 
encodes information at multiple levels of linguistic and non-linguistic 
representation (e.g. event structures, syntax, semantics, phonology, 
orthography). However, for the purpose of explaining our current 
findings, we will primarily focus on just four of these levels of repre-
sentation: concepts, semantic features, lexical items, and orthographic 
features. Within this part of the generative network, each individual 
concept (e.g. {lime}) serves as a latent cause of a unique combination of 
distributed semantic features (e.g. the combination of <sour> and <
edible> and < squeezable> and < green>). Each unique combination of 
semantic features, in turn, serves as a latent cause of a specific lexical 
representation (e.g. /lime/), which similarly serves as the latent cause 
for a particular set of distributed form features (e.g. “L-I-M-E"). Note 
that, with these assumptions, each lexical representation describes a 

12 In a previous eye-tracking study, Frisson et al., 2017 (Experiment 2) 
observed semantic overlap effects on plausible prediction violations, but only 
on late eye-tracking measures. This led the authors to conclude that lexical 
predictability and semantic overlap influenced distinct processing stages (word 
recognition and integration). The current findings, however, suggest that lexical 
predictability and semantic relatedness both modulated the same underlying 
ERP response (the N400) with a similar time course. Again, this finding sup-
ports the claim that semantic overlap effects are anticipatory in nature and can 
influence the initial stages of lexico-semantic retrieval (for additional sup-
porting evidence, see Wong et al., 2022). 
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mapping function that uniquely links a particular unique combination of 
semantic features with a particular set of form features.13 

During word-by-word language comprehension, the situation model 
continually propagates belief down to lower levels of the generative 
hierarchy. Because this high-level situation model represents informa-
tion over a long time span, these beliefs will reach the conceptual, se-
mantic, and lexical levels before new bottom-up input becomes available 
to these levels. Thus, within this framework, a lexico-semantic prediction 
corresponds to the comprehender’s prior beliefs about the particular 
concepts, the particular sets of semantic features, and the particular 
lexical items that are most likely to have caused/generated the ortho-
graphic features of the upcoming word. For example, when reading the 
scenario, “At the restaurant, Anthony got his food. He squeezed the 
fresh….”, a comprehender may have a 70% prior belief that Anthony 
squeezed a {lemon}/lemon/ and its unique set of semantic features, and 
a 30% belief that Anthony squeezed a {lime}/lime/ and its unique set of 
semantic features. (Note that, as discussed later, at the level of semantic 
features, a comprehender’s prior belief about a particular combination of 
features does not necessarily equate to the average of their prior belief of 
encountering each of these features individually). 

Then, when new orthographic/phonological input is encountered (e. 
g. the orthographic features, L-I-M-E), this provides strong new evidence 
that is compatible with only one candidate hypothesis (only one latent 
cause) at each level of representation. As a result, over multiple cycles of 
belief updating, the agent’s belief over the conceptual representation, 
{lime}, its unique combination of semantic features (<sour> and <
edible> and < squeezable> and < green>), and its lexical representa-
tion, /lime/, will each rise to nearly 100%, while belief will fall over all 
other mutually exclusive hypotheses at each of these levels of repre-
sentation. This process of belief updating can be conceptualized as a type 
of “competitive selection” in that it involves selecting one latent cause 
from multiple mutually exclusive hypotheses. However, as we discuss 
next, and as illustrated in Fig. 4, this type of “selection-by-inference" is 
quite different from the competitive selection that is implemented by 
IAC networks. 

As explained earlier, in an IAC architecture, selection is implemented 
through mutual lateral inhibition between active units at a single lexical 
level of representation. In contrast, in probabilistic inference, latent 
causes compete to explain observations at the level below. To win this 
competition, each possible hypothesis at the conceptual and lexical 
levels must be evaluated in relation to each possible combination of 
observed semantic and orthographic features in order to determine 
which hypothesis/latent cause provides the best possible explanation of 
the particular combination of features that is observed. For example, at 
the lexical level, /lime/ and /dime/ both match the observed ortho-
graphic features, “I-M-E", but only /lime/ can additionally explain the 
specific combination “L-I-M-E", with the presence of “L” and the absence 
of “D” in the input’s first position, and so it will win the competition. 
Analogously, at the conceptual level, both {lemon} and {lime} can 
explain the observed semantic features, <sour>, <edible>, and <
squeezable>, but only the conceptual representation {lime} can account 
for the specific combination of observed features, including the presence 
of <green> and the absence of <yellow>. 

Moreover, as discussed by Lee and Mumford in their foundational 
paper describing hierarchical inference in the visual system, because 
belief flows dynamically up and down the hierarchical generative 
model, competitive inference over latent causes at higher levels of the 
hierarchy will continually influence competitive inference at lower- 
levels, and vice versa (Lee & Mumford, 2003, p. 1437). For example, 

as illustrated schematically in Fig. 4, as belief rises over the lexical 
representation, /lime/, this will lead the comprehender to infer/retrieve 
its unique set of semantic features from long-term memory. The rise in 
belief over this unique set of semantic features will, in turn, provide new 
bottom-up evidence that leads the comprehender’s prior conceptual 
beliefs to shift from {lemon} to {lime}. This, in turn, will provide new 
top-down evidence that induces a further rise in belief over /lime/ 
(versus /dime/) as the most likely lexical hypothesis.14 

Critically, as belief rises over the correct latent conceptual and lexical 
representations ({lime} and /lime/), it falls over their competing 
neighbors ({lemon} and /dime/). This phenomenon exemplifies a form 
of Bayesian reasoning known as “explaining away” in which a rise in 
belief over one latent cause results in a reduction in belief over 
competing latent causes that share overlapping outcomes/observations. 
“Explaining away” is classically illustrated by the sprinkler problem: if 
we see wet grass and then find out that the sprinkler was on, our belief in 
the more likely hidden cause –– that it was raining –– decreases (Pearl, 
1988). As we discuss later, explaining away can be implemented in 
neural networks that approximate Bayesian inference, where it provides 
a more “natural” mechanism for competitive selection than lateral in-
hibition (see Gaskell & Marslen-Wilson, 1997; Smolensky, 1986). 

These basic principles of probabilistic inference can explain two key 
aspects of the current findings. First, they can explain why, in the 
WithCompetitor contexts that constrained for upcoming words that were 
semantically related to one another, we found evidence of friendly but 
not competitive pre-activation. As explained above, in a Bayesian 
framework, multiple prior beliefs can be maintained in parallel. Thus, 
after reading the context, “At the restaurant, Anthony got his food. He 
squeezed the fresh….”, the conceptual/lexical representations of both 
{lemon}/lemon/ and {lime}/lime/ are pre-activated in parallel, without 
any pressure to select between them. Moreover, because these pre- 
activated representations share common semantic features (i.e. 
<sour>, <edible>, and < squeezable>), and because the prior proba-
bility of each of these shared features is 100%, the average prior prob-
ability of encountering the set of individual semantic features that 
correspond to “lime” will be >30% (i.e. greater than the prior proba-
bility of the unique combination of these features). As a result, when this 
lower probability target, “lime” is encountered, and its lexical and 
conceptual representation is actually inferred, the total change in prob-
ability at the level of semantic features will be less than the change in belief 
at either the lexical or conceptual levels. 

Crucially, behavioral measures of processing and the N400 are pri-
marily sensitive to changes at the level of semantic features, rather than 
at the lexical or conceptual levels. This has important implications for 
using estimates of lexical probability, based either on cloze or large 
language models, to predict behavioral and ERP measures of processing: 
Given that so many of the words that we encounter in natural text have 
semantically related alternatives (Luke & Christianson, 2016), these 
measures are likely to systematically underestimate the probability of 

13 Within a Bayesian belief network, each individual lexical item would corre-
spond to a particular value of a variable that functions to “d-separate” these 
semantic and form features such that they are conditionally independent (Pearl, 
1988; see Narayanan & Jurafsky, 2001 for discussion in relation to a different 
aspect of language comprehension). 

14 This has important implications for theories of language comprehension: It 
implies that “lexical access” (inferring the lexical item that best explains a set of 
form features) is inherently intertwined with, and inseparable from inferring its 
conceptual representation. Moreover, to the degree that a word’s conceptual 
representation (e.g. {lime} is part of an event, e.g. {Anthony squeezed the 
lime}, then this also implies that “lexical access” is inherently linked to “lexical 
integration”. However, we emphasize that integrating a single word into its 
local context to infer an event within a single proposition is not the same as 
updating a still-higher-level situation model, based on this newly inferred 
event. The latter process may additionally involve activating/retrieving new 
schema-relevant information from long-term memory. For example, inferring, 
{Anthony squeezed the lime} may lead the comprehender to update her situ-
ation model by increasing belief over (or, equivalently, retrieving) information 
related to Mexican or Latin American cuisine, see Figure 3. As discussed earlier, 
the successful update of the comprehender’s higher-level situation model may 
be linked to the late frontal positivity ERP component, rather than the N400. 
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encountering their semantic features and therefore their processing 
difficulty. 

Second, these probabilistic principles can explain why, in the With-
Competitor contexts that constrained for upcoming words that were 
semantically unrelated to each other, we also saw no evidence of costs 
due to competitive pre-activation; that is, why the process of inferring 
the correct lexical and conceptual representation of the target was no 
more difficult than if the same target had been encountered with the 
same probability in a NoCompetitor context. To illustrate why this was 
the case, imagine reading a context like “Gina was about to eat her fish 
and fries. She squeezed the…”. At this point, we may have a 70% prior 
belief in /ketchup/ and a 30% prior belief in /lemon/. As discussed 
earlier, in an IAC architecture, these two pre-activated unrelated lexical 
representations would begin to compete before the bottom-up input is 
encountered. Moreover, once “lemon” is encountered, its pre-activated 
lexical representation, /lemon/, would continue to receive lateral inhi-
bition from the more strongly pre-activated item, /ketchup/. For both 
these reasons, it will be harder to select the correct target, /lemon/, in 
this WithCompetitor context than if there had been no competing 
alternative. 

In contrast, in a Bayesian framework, there is no prior pressure to 
select between the pre-activated representations, /ketchup/ and 
/lemon/15 until new bottom-up evidence, becomes available. Moreover, 
once the new target input is encountered, the total change in belief that 

it induces is determined primarily by its own prior probability. For 
example, in the above example, encountering the word “lemon” should 
induce an increase in belief of 70% over its lexical representation, i.e. a 
change from 30% to almost 100%. This will be accompanied by a fall in 
belief of 70% to nearly 0% over /ketchup/; that is, the total change of 
belief is 70% in both directions. Similarly, in a NoCompetitor context, 
observing “lemon” will induce a 70% increase in belief over /lemon/. 
Because within this framework, all lexical probabilities must add up to 1, 
this will be accompanied by a 70% decrease in belief over the full set of 
alternative lexical representations in the lexicon. 

4.6. Marr level 2: A neural network that approximates Bayesian 
inference: Predictive coding 

Of course, principles that are specified at Marr’s first level of analysis 
are not always applicable at Marr’s second algorithmic level. However, 
there are some connectionist networks and algorithms that can 
approximate Bayesian inference, and, in these cases, the fundamental 
probabilistic principles outlined above should also apply. Specifically, 
within these types of neural networks, one can think of each lexical 
representation as corresponding to a specific pattern or “blend” of ac-
tivity (cf. Smolensky, 1986) over the particular set of connectionist units 
that encode its unique set of semantic features. On the assumptions that 
(a) comprehenders pre-activate upcoming lexico-semantic information 
based on the full situation model they have constructed prior to 
encountering an incoming word, and (b) they allocate a fixed amount of 
resources for this pre-activation, each unique blend would be pre- 
activated in parallel, with a strength that mirrors its estimated prior 

Fig. 4. Schematic illustration of the state of one part of a comprehender’s internal generative model at approximately 400 ms after observing the new bottom-up 
orthographic input, L-I-M-E, following the context, “At the restaurant, Anthony got his food. He squeezed the fresh…”. 
At the level of lexical items: Most belief is centered over the lexical item, /lime/, which (a) provides the best explanation for the full set of observed orthographic 
features, L-I-M-E, and (b) is best explained by the unique set of semantic features that is being inferred (or retrieved) at the level above. At this point, there is also 
some belief over /lemon/, which was the more likely prior lexical candidate before the bottom-up input was encountered, but belief in /lemon/ will continue to fall 
because it cannot explain all the observed orthographic features, L-I-M-E. Finally, at this point, there is some belief over /dime/, which is able to explain several of the 
observed orthographic features (“I-M-E"). However, as belief continues to rise over /lime/, it will fall over this competing orthographic lexical neighbor, which is said 
to be “explained away”. 
At the level of semantic features: Belief is rising over the unique combination of semantic features (<sour> and <edible> and <squeezable> and <green>), which 
provides the best explanation of the most probable lexical candidate, /lime/, that is being inferred at the lexical level below. At this point in time, there is also some 
belief over the unique combination of semantic features associated with the concept, {lemon} (<yellow> and <sour> and <edible> and <squeezable>), which was 
the most probable concept before the bottom-up input was encountered. However, belief over this particular combination will continue to fall because it does not 
provide the best explanation for the more probable lexical candidate, /lime/. Note that the probability of the individual semantic features that are shared by the 
conceptual representations of {lime} and {lemon}, i.e., <sour>, <edible>, and <squeezable>, will each remain high (at 100%); it is primarily the probability of the 
feature, <yellow>, that will fall. Therefore, at the level of semantic features, any change in belief induced by the bottom-up input (or, equivalently, the amount of 
“work” of retrieving or accessing these features from semantic memory) will be less than the change in belief that is induced either at the lexical level below or at the 
conceptual level above. Finally, at this point in time, there is also some belief over the particular set of semantic features that can explain /dime/, which as noted 
above, is being inferred with lower probability at the level below. However, the comprehender’s belief in this unique combination of semantic features will continue 
to fall (a) because it cannot explain the more probable lexical candidate, /lime/, that is being inferred at the level below, and (b) because it cannot be explained by 
the more probable unique concept, {lime}, that is being inferred at the level above. 
At the level of concepts: Most belief is centered over the concept, {lime} — the latent cause that (a) provides the best explanation of the most probable unique 
combination of semantic features (<sour> and <edible> and <squeezable> and <green>) that is being inferred at the level below, and (b) is also explained by the 
event structure that is being inferred at the level above. At this point, any belief over the concept {dime} is minimal because of the lack of both bottom-up and top- 
down support. Finally, at this point in time, there is some remaining belief over {lemon}, which was the more likely conceptual candidate before the bottom-up input 
was observed. However, as belief continues to rise over {lime}, it will fall over this competing conceptual candidate, which is said to be “explained away”. 
At the level of event structures: As belief rises over the concept, {lime}, it will increase over the specific event {Anthony squeezed the fresh lime}. Note, given the 
preceding context, the correct syntactic structure has already been inferred. Therefore, within this framework, the successful “access” of a word’s semantic features 
and its underlying conceptual representation by 500 ms (at the end of the N400 time-window) will often equate to successful “lexical integration” — the integration 
of a word into its local event/proposition. 
At the level of the situation model: Note that integrating a word into its local event/proposition does not necessary equate to integrating the newly inferred event 
into the entire situation model. Updating the entire situation model may involve the additional inference (or retrieval) of new schema-relevant information. For 
example, in the present case, the reader is likely to have already inferred that Anthony is eating fish. In addition, as the reader becomes increasingly certain of the 
specific event, {Anthony squeezed the fresh lime}, she may additionally infer that Anthony is eating tacos, which may, in turn, lead her to retrieve more details about 
other items that he is eating (e.g. Mexican or Latin American cuisine). We suggest that this process of successfully updating belief at the level of the situation model by 
retrieving additional schema-relevant features may be linked to another ERP component that peaks at a later stage of processing — the late frontal positivity. 

15 Within this framework, the only time when a comprehender would “pre- 
select” upcoming candidates during the pre-activation phase is if the context 
constrains for representations that are mutually incompatible with one another. 
For example, the selection restrictions of a verb can constrain either for se-
mantic features associated with animate or inanimate entities (see Wang et al., 
2020 for recent evidence for this type of distributed pre-activation). 
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probability.16 Then, upon encountering new bottom-up input, activity 
would increase over the unique pattern that encodes the semantic fea-
tures of the incoming word, while, at the same time decreasing over all 
other blends. Once again, however, if the incoming word’s semantic 
features are compatible with semantic features that have been pre- 
activated as part of another word’s unique blend, then that word 
should still receive additional facilitation, evoking a smaller N400 than 
one would expect based only on its lexical probability (the probability of 
encountering its unique set of semantic features). 

There are several types of neural networks and algorithms that can 
approximate Bayesian inference. For example, a recent modification of 
the original IAC model – the Multinomial Interactive Activation model – 
has been shown to implement optimum Bayesian inference through 
Gibbs’ sampling (McClelland, Mirman, Bolger, & Khaitan, 2014). 
However, we believe that a particularly promising approach for un-
derstanding both language comprehension, and the functional role of 
the N400, is predictive coding – a biologically plausible neural architec-
ture and algorithm that has been proposed to approximate Bayesian 
inference in the brain (Friston, 2005; Mumford, 1992; Rao & Ballard, 
1997; Rao & Ballard, 1999; Spratling, 2016a, 2016b). 

In predictive coding, probabilistic inference is approximated by a 
particular dual-unit connectionist architecture that implements a 
particular optimization algorithm. Specifically, at each level of the 
representational hierarchy, “state units” actively generate top-down 
predictions that attempt to explain (or reconstruct) information that is 
observed at the level below. Any observed information at the lower level 
that fails to match these top-down predictions (residual information) 
produces activity within lower-level “error units”, which is termed, 
“prediction error”. This prediction error is then passed back up to the 
higher level where it is used to update the representations encoded 
within the state units. These updated state units will therefore produce 
more accurate predictions/reconstructions on the next iteration of the 
algorithm. This process repeats over multiple iterations and proceeds in 
parallel at multiple levels of the hierarchy until prediction error is 
minimized. At this point, the brain will have converged on the repre-
sentations that best explain the bottom-up input. 

In recent work, we have developed and implemented a predictive 
coding model of lexico-semantic processing in which we directly link the 
N400 component to the summed activity produced by lexical and se-
mantic error units (i.e. the magnitude of lexico-semantic prediction 
error) as the model infers the conceptual and lexical representation from 
bottom-up orthographic inputs (Nour Eddine, Brothers, Wang, Spratling 
& Kuperberg, 2023). 

As in Chen and Mirman (2012) IAC model, in our predictive coding 
model, each lexical unit is linked to a unique set of distributed semantic 
features. However, in contrast to this IAC architecture, there are no 
lateral inhibitory connections between state units within the lexical 
layer. Therefore, there are no competitive interactions between pre- 
activated conceptual or lexical representations. Instead, the selection 
of the correct lexical and conceptual representation begins only after the 
bottom-up input is observed. And, at this point, instead of competing 

through mutual lateral inhibition within any single layer of the network, 
the correct representation is selected through the type of global 
competition described above, in which all possible combinations of 
features at multiple levels of the hierarchy are considered and 
competing lexical and conceptual neighbors are explained away. 

In predictive coding, explaining away occurs because state units at 
each level of representation suppress prediction error at the level below, 
thereby depriving their competing neighbors of their own inputs (see 
Spratling, De Meyer, & Kompass, 2009; Spratling, 2016a for discussion). 
For example, at the lexical level, /lime/ generates top-down predictions 
that suppress orthographic prediction error, thereby depriving potential 
lexical competitors (orthographic neighbors, e.g. /dime/) of their initial 
source of bottom-up activation, while at the conceptual representation 
(e.g. {lime}) generates semantic predictions that suppress semantic 
prediction error, thereby depriving potential conceptual neighbors (se-
mantic competitors, e.g. {lemon}) of activity. 

Our predictive coding model is able to simulate the time course of the 
N400, as well its sensitivity to multiple lexical and contextual variables. 
Notably, consistent with the empirical data, the magnitude of lexico- 
semantic prediction error is highly sensitive to an incoming word’s 
contextual probability, but not the constraint of the prior context (the 
probability of the most likely lexical candidate). Also consistent with the 
present findings, prediction error is smaller to unexpected words that 
share semantic features with a predicted alternative (Nour Eddine et al., 
2022; Nour Eddine et al., 2023). This correspondence suggests that 
predictive coding may provide a promising theoretical account of the 
neural computations that support lexico-semantic processing and give 
rise to the N400 response. 

5. Conclusion 

To sum up, we find no evidence that, in contexts that constrain for 
more than one continuation, competitive interactions between pre- 
activated parallel graded predictions reduces lexico-semantic process-
ing of incoming words, as indexed by the N400. We also find no evidence 
that competition from a higher probability candidate induces costs in 
processing a lower probability candidate at a later stage of processing, as 
indexed by the late frontal positivity. Instead, readers show processing 
benefits when they encounter lower-probability incoming words that 
are semantically related to a higher-probability alternative. These 
findings have important theoretical implications for informing models of 
predictive language processing, suggesting that routine top-down pre-
diction does not rely on precisely the same mechanisms as those 
employed in language production. Finally, our results are consistent 
with hierarchical accounts of language comprehension based on prob-
abilistic inference, such as predictive coding. 
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the comprehender (a) continually updates her situation model based the prior 
context, and (b) uses this updated situation model to generate top-down pre-
dictions that reach lower levels of representation before new lexico-semantic 
information becomes available from the bottom-up input. This, however, will 
not always the case, and will depend on multiple factors, including the presence 
of discourse coherence markers that can influence updates to the situation 
model (e.g. Xiang & Kuperberg, 2015), the comprehender’s goals (e.g. Brothers, 
Wlotko, Warnke, & Kuperberg, 2020), the broader communicative environment 
(e.g. Delaney-Busch, Morgan, Lau & Kuperberg, 2019), the presentation rate of 
the linguistic stimuli (e.g. Camblin, Ledoux, Boudewyn, Gordon, & Swaab, 
2007, Wlotko & Federmeier, 2015), as well as the speed of information flow 
across the cortex, see Kuperberg & Jaeger, 2016, Section 3.4, pp. 42-45 for 
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