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A B S T R A C T   

The N400 event-related component has been widely used to investigate the neural mechanisms underlying real- 
time language comprehension. However, despite decades of research, there is still no unifying theory that can 
explain both its temporal dynamics and functional properties. In this work, we show that predictive coding – a 
biologically plausible algorithm for approximating Bayesian inference – offers a promising framework for 
characterizing the N400. Using an implemented predictive coding computational model, we demonstrate how 
the N400 can be formalized as the lexico-semantic prediction error produced as the brain infers meaning from 
the linguistic form of incoming words. We show that the magnitude of lexico-semantic prediction error mirrors 
the functional sensitivity of the N400 to various lexical variables, priming, contextual effects, as well as their 
higher-order interactions. We further show that the dynamics of the predictive coding algorithm provides a 
natural explanation for the temporal dynamics of the N400, and a biologically plausible link to neural activity. 
Together, these findings directly situate the N400 within the broader context of predictive coding research. More 
generally, they raise the possibility that the brain may use the same computational mechanism for inference 
across linguistic and non-linguistic domains.   

1. Introduction 

A key discovery in the history of psycholinguistics was the presence 
of a neural signature of online language processing — the N400 event- 
related potential (ERP; Kutas & Hillyard, 1980, 1984). Decades of 
research have established that the N400 indexes neural processes at the 
heart of semantic processing (Kutas & Federmeier, 2011). There has 
therefore been considerable interest in developing a theoretical frame-
work for understanding the role it plays in language comprehension. 
This, however, has proved a formidable challenge. Several theories and 
computational models have provided compelling explanations for its 
functional properties. However, a unifying, biologically plausible ac-
count remains elusive. Predictive coding is a computational algorithm 
that has been proposed to carry out perceptual inference in the brain 
(Friston, 2005; Mumford, 1992; Rao & Ballard, 1999; Spratling, 2016b). 
Using an implemented predictive coding model of lexico-semantic pro-
cessing, we show that the magnitude of lexico-semantic prediction error 
tracks the temporal dynamics of the N400 as well as its functional 

sensitivity to both lexical and contextual information. Together, these 
findings raise the possibility that the brain employs predictive coding to 
infer meaning from form, with the N400 playing a central role in this 
inferential process. 

The N400 ERP is a negative-going waveform that is detected at the 
scalp surface using both electroencephalography (EEG) and magneto-
encephalography (MEG) between 300 and 500 ms following the onset of 
any meaningful stimulus, such as a word or a picture (see Kutas & 
Federmeier, 2011, for a review). During language processing, the N400 
is highly sensitive to the relationship between a word and its prior 
context, regardless of whether this context is a single word (in semantic 
and repetition priming paradigms, e.g. Bentin, McCarthy, & Wood, 
1985; Rugg, 1985), or a more extended sentence or discourse context (e. 
g., DeLong, Urbach, & Kutas, 2005; Kutas & Hillyard, 1984; Van Ber-
kum, Hagoort, & Brown, 1999). The N400 is also elicited by words 
presented out of context where its amplitude is sensitive to several 
lexical variables, including orthographic neighborhood size (e.g. core >
kiwi; Holcomb, Grainger, & O’Rourke, 2002; Laszlo & Federmeier, 
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2011), lexical frequency (e.g. wart < cold; Rugg, 1990; Van Petten & 
Kutas, 1990), and concreteness/semantic richness (e.g. lime > know; 
Kounios & Holcomb, 1994; Holcomb, Kounios, Anderson, & West, 1999; 
Rabovsky, Sommer, & Abdel Rahman, 2012b). 

Despite extensive work on the N400, there is still no general 
consensus on its functional significance. For many years, two competing 
theories dominated the debate: a lexical access and an integration ac-
count. Briefly, the lexical access account interpreted the N400 as 
reflecting the difficulty of accessing or “recognizing” a unique lexical 
item (e.g. Lau, Phillips, & Poeppel, 2008), while the integration account 
interpreted it as a “post-lexical" process that links the fully accessed item 
with its prior context (Brown & Hagoort, 1993; Hagoort, Baggio, & 
Willems, 2009). However, as several researchers pointed out, this type 
of dichotomy between “access” and “integration” has difficulty in 
explaining the sensitivity of the N400 to both lexical and contextual 
factors (Baggio & Hagoort, 2011; Kuperberg, 2016; Kutas & Federmeier, 
2011). More generally, this dichotomy rests on the somewhat ques-
tionable assumption that lexical access and semantic integration are 
distinct, separable cognitive processes that occur in a fixed sequence 
(see Laszlo & Federmeier, 2011; Kuperberg, Brothers, & Wlotko, 2020 
for discussion). 

These shortcomings led to the more general proposal that the N400 
reflects the impact of stimulus-driven activation on the current state of 
semantic memory (Kutas & Federmeier, 2011). In this framework, se-
mantic memory is conceptualized as a dynamic multimodal system that 
is interactively influenced by both the high-level incremental interpre-
tation of the prior context, as well as the linguistic form of an individual 
word. This theory therefore provided some intuition for why the N400 is 
sensitive to both lexical variables and contextual predictability. For 
example, as a new bottom-up input activates its overlapping ortho-
graphic neighbors, the co-activation of their semantic features would 
result in an enhanced N400 response (see Laszlo & Federmeier, 2011). 
And if a prior context pre-activates expected upcoming semantic fea-
tures, then the amplitude of the N400 to an incoming word that encodes 
the same features should be attenuated, even if that word is lexically 
unexpected (Federmeier & Kutas, 1999). 

On the other hand, the theory’s flexibility leaves a number of 
cognitive mechanisms unspecified. How do particular stimuli activate 
the correct set of semantic features in long-term memory? Why does 
lexical processing result in the partial activation of orthographic and 
semantic neighbors, and how does the brain ultimately suppress these 
neighbors to settle on a “correct” interpretation of the bottom-up input? 
What determines the characteristic rise and fall of the N400 response? 
Most importantly, how are these processes implemented in a biologi-
cally plausible fashion in the brain? 

One way of addressing these questions is through the development of 
explicit computational models. Several researchers have risen to this 
challenge, and a number of connectionist models of the N400 have been 
described (Brouwer, Crocker, Venhuizen, & Hoeks, 2017; Cheyette & 
Plaut, 2017; Fitz & Chang, 2019; Laszlo & Armstrong, 2014; Laszlo & 
Plaut, 2012; Rabovsky, 2020; Rabovsky, Hansen, & McClelland, 2018; 
Rabovsky & McRae, 2014); see Nour Eddine, Brothers, & Kuperberg, 
2022 for a comprehensive review). Broadly, these models of the N400 
fall into two classes: “word-level" and “sentence-level". 

The word-level models were trained to map a single word-form input 
(e.g., a letter-string), clamped at the input layer, on to a pattern of 
activation that represented the word’s meaning at the top (output) layer 
(Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014; Laszlo & Plaut, 
2012; Rabovsky & McRae, 2014). In one set of studies, Laszlo, Plaut, 
Armstrong and Cheyette used a biologically motivated Semantic Acti-
vation architecture to simulate the N400 as the total activity produced 
within its semantic (output) layer (Cheyette & Plaut, 2017; Laszlo & 
Armstrong, 2014; Laszlo & Plaut, 2012). This model was able to simulate 
the effects of several lexical variables on the N400 produced by words 
presented in isolation, including the effects of orthographic neighbor-
hood size (Laszlo & Plaut, 2012), lexical frequency (Cheyette & Plaut, 

2017), and semantic richness (Cheyette & Plaut, 2017). It was also able 
to simulate the attenuation of the N400 to target inputs in both repeti-
tion (Laszlo & Armstrong, 2014) and semantic priming paradigms 
(Cheyette & Plaut, 2017), see Table 1. 

In another word-level model, Rabovsky and McRae (2014) simulated 
the N400 as the difference (cross-entropy error) between the activity 
produced by the model’s semantic (output) layer and an ideal “correct” 
semantic target presented to the model. The authors showed that this 
operationalization of the N400 could account for a similar range of 
findings as above (see Table 1). 

The sentence-level models were trained to map a sequence of word 
inputs onto a higher event-level representation (Brouwer et al., 2017; 
Rabovsky et al., 2018), or onto the model’s prediction of a subsequent 
word (Fitz & Chang, 2019). These training goals required the model to 
retain a representation of the full sequence of prior inputs as well as to 
implicitly predict upcoming information. This was achieved by 
including a recurrent element in the network (cf. Elman, 1990; Elman & 
McClelland, 1984). The N400 was modeled either as the amount of 
change that the input induced within a particular hidden layer within 
the network (Brouwer et al., 2017; Rabovsky, 2020; Rabovsky et al., 
2018), or as the difference between a next-word prediction that was 
explicitly generated by the model, and the word that was subsequently 
presented (Fitz & Chang, 2019). Together, these models were able to 
simulate multiple effects of a prior context on the N400 evoked by 
incoming words (see Table 1, and Nour Eddine et al., 2022 for a detailed 
review). 

The architectures and assumptions of these different computational 
models of the N400 are quite different from one another. However, it is 
worth emphasizing that in all except the Semantic Activation model 
(Cheyette & Plaut, 2017; Laszlo & Armstrong, 2014; Laszlo & Plaut, 
2012), the N400 was operationalized as a difference value that was 
calculated by the modeler outside the model’s architecture. This dif-
ference value was conceptualized either as a “prediction error” 
(Rabovsky & McRae, 2014; Fitz & Chang, 2019, or as a “change-in-state” 
(Brouwer et al., 2017; Rabovsky et al., 2018). It was assumed to emerge 
either as a byproduct of other computations (Brouwer et al., 2017) and/ 
or to serve as a signal for downstream learning (Fitz & Chang, 2019; 
Rabovsky et al., 2018; Rabovsky & McRae, 2014). In no case, however, 
did it play a direct functional role in comprehension itself. This is in 
contrast with predictive coding, which proposes that prediction error, 
computed locally at each level of representation, plays an integral role in 
the optimization algorithm that the brain uses to approximate inference, 
i.e., the process of inferring meaning from an input’s linguistic form.1 

Predictive coding refers to a biologically plausible computational 
architecture, with a particular arrangement of feed-forward and feed-
back connections, that implements an optimization algorithm approxi-
mating Bayesian inference.2 It was initially proposed to explain extra- 
classical receptive field effects in the visual cortex (Rao & Ballard, 
1999; see also Mumford, 1992), and was later expanded into a more 
general account of perceptual inference in the brain (Friston, 2005; 
Clark, 2013; see also Spratling, 2016b). In predictive coding, prediction 
error is defined as the residual information observed at a given level of 
the cortical hierarchy that cannot be explained by top-down predictions 
(or “reconstructions’) that are generated by the level above. This error is 
encoded within “error units”, and is passed up to the level above where it 
is used to modify representations encoded within functionally distinct 
“state units”. As a result, these higher-level state units generate more 

1 As we elaborate further in the Discussion section, in predictive coding, 
prediction error can also, in principle, be used for downstream learning 
(Whittington & Bogacz, 2017; Millidge et al., 2020; Song et al., 2020).  

2 This is in contrast to a more general and non-specific use of the term 
“predictive coding” that has sometimes been used in the language compre-
hension literature to refer to any type of prediction or “prediction error” in the 
brain. 
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accurate top-down predictions on the next iteration of the algorithm, 
which suppress the lower-level prediction error. This process takes place 
at each level of the hierarchy such that, over multiple iterations, the 
magnitude of prediction error –– the total activity produced by the error 
units –– gradually decreases as the state units converge upon the rep-
resentation that best explains the bottom-up input. 

The idea that higher levels of a representational hierarchy generate 
top-down predictions that facilitate the processing of inputs at lower 
levels is largely consistent with how prediction is typically framed in 
more general psycholinguistic and neurobiological frameworks of lan-
guage processing. According to many of these accounts, during incre-
mental language comprehension, the brain continually generates top- 
down predictions, based on a high-level interpretation of the prior 
context, which facilitate the processing of incoming words whose se-
mantic features match these predictions (DeLong et al., 2005; Feder-
meier, 2007; Kuperberg & Jaeger, 2016, Section 3.5). The amplitude of 
the N400 is conceptualized as reflecting the ease of accessing the se-
mantic features of these incoming words (i.e., the ease of lexico- 
semantic access or retrieval), or as the amount of unpredicted lexico- 
semantic information encoded within the bottom-up input (see 

Kuperberg, 2016 for discussion). Indeed, some researchers have 
explicitly appealed to the principles of predictive coding to explain the 
functional role of the N400 (e.g. Bornkessel-Schlesewsky & Schlesewsky, 
2019; Kuperberg et al., 2020; Rabovsky & McRae, 2014; Xiang & 
Kuperberg, 2015). To date, however, there have been no attempts to 
simulate the N400 (or any other language ERP component) using an 
implemented predictive coding model. Developing such an imple-
mentation is important not only in formalizing our intuitions about the 
role of prediction in comprehension, but also for linking the language 
system to more general computational mechanisms implicated in other 
perceptual and cognitive domains. 

In the present work, we built a computational model of lexico- 
semantic processing that was based on exactly the same predictive 
coding principles as those used to simulate low-level neural phenomena 
in the visual system (Rao & Ballard, 1999; Spratling, 2012; Spratling, 
2013; Spratling, 2014). We operationalized the N400 as lexico-semantic 
prediction error –– the total activity produced by error units at the se-
mantic and lexical levels on each iteration of the algorithm, as the model 
inferred the meaning of orthographic inputs. We carried out a series of 
simulations to determine whether the principles of predictive coding can 

Table 1 
Phenomena simulated by computational models of the N400. An overview of the range of N400 phenomena that have been modeled in the literature.    

Word-level models Sentence-level models    

Laszlo and 
Plaut 
(2012) 

Laszlo and 
Armstrong 
(2014) 

Cheyette and 
Plaut (2017) 

Rabovsky and 
McRae (2014) 

Brouwer 
et al. (2017) 

Rabovsky et al. 
(2018);  
Rabovsky (2020) 

Fitz and 
Chang 
(2019) 

Lexico-semantic 
Predictive 
Coding^ 

Lexical 
variables 

Orthographic 
neighborhood size ✓ –– ✓ ✓ –– –– –– ✓ 

Lexical frequency –– –– ✓ ✓ –– ✓ –– ✓ 
Concreteness/ 
Semantic richness 

–– –– ✓ ✓ –– –– –– ✓ 

Lexical status –– –– –– –– –– –– –– ✓ 

Word-pair 
priming 

Repetition priming –– ✓ ✓ ✓ –– ✓ ✓ ✓ 
Semantic priming –– –– ✓ ✓ –– ✓ –– ✓ 
Associative priming –– –– ✓ –– –– ✓ –– –– 

Contextual 
effects 

Lexical probability –– –– –– –– –– ✓ ✓ ✓ 
Constraint for 
unexpected endings 

–– –– –– –– –– ✓ ✓ ✓ 

Anticipatory 
semantic overlap 

–– –– –– –– –– ✓ –– ✓ 

Anticipatory 
orthographic 
overlap 

–– –– –– –– –– –– –– ✓ 

Role reversal 
anomaly –– –– –– –– ✓ ✓ –– –– 

Semantic 
incongruity 

–– –– –– –– ✓ ✓ –– –– 

Position in sentence –– –– –– –– –– ✓ ✓ –– 
Word order 
violation –– –– –– –– –– ✓ –– –– 

Linguistic 
adaptation –– –– –– –– –– ✓ ✓ ––  

Article prediction 
violation (a/an) 

–– –– –– –– –– ✓ –– –– 

Interactions 

Constr. x 
Anticipatory sem. 
Overlap 

–– –– –– –– –– –– –– ✓ 

Repetition x 
Frequency –– –– ✓ ✓ –– –– –– ✓ 

Repetition x 
Semantic Richness 

–– –– ✓ ✓ –– –– –– ✓ 

Repetition x 
Incongruity 

–– –– –– –– –– ✓ –– –– 

Cloze x Frequency –– –– –– –– –– –– –– ✓ 
Cloze x Semantic 
Richness –– –– –– –– –– –– –– ✓ 

Learning 
effects 

Changes across 
development –– –– –– –– –– ✓ –– –– 

L2 priming with 
min. L2 knowledge 

–– –– –– –– –– ✓ –– –– 

^We include the current Lexico-Semantic Predictive Coding model in this Table for completion. However the effects we simulated will only be reported in the Results 
section. 
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account for the temporal dynamics of the N400, as well as its functional 
sensitivity to (1) various lexical variables, (2) priming, (3) contextual 
effects, and (4) their higher-order interactions. 

2. Methods 

2.1. Model architecture 

The basic structure of the predictive coding model used in all sim-
ulations is shown in Fig. 1. It consisted three levels of linguistic 

representation (orthographic, lexical, semantic) and a fourth layer at the 
top that represented individual concepts that corresponded to each 
lexical item, and that allowed the modeler to provide probabilistic pre- 
activation to simulate the effects of context (see Simulations). Similar to 
classic connectionist architectures like Interactive Activation and 
Competition (IAC) (Chen & Mirman, 2012; McClelland & Rumelhart, 
1981) and TRACE (McClelland & Elman, 1986), instead of training the 
model to learn its own internal representations, we incorporated inter-
pretable psycholinguistic representations at each level of the hierarchy 
and hand-coded the weights that described the mappings between rep-
resentations at successive levels. This enabled us to examine and 
describe the mechanics of the predictive coding scheme in terms of 
constructs that we were able to interpret directly (although we note that 
it is possible for the model to learn these parameters without any 
modification to the architecture — a point we return to in the 
Discussion). 

A key claim of predictive coding is that each layer has two types of 
connectionist units — state units, which encode the internal represen-
tations being inferred, and error units, which encode the difference in 
information (i.e., residual information) between that represented by 
state units at the same level and the information represented in state 
units at the level above. Across successive levels of the hierarchy, state 
units communicate exclusively through error units, which pass residual 
information between layers. 

In our architecture, we implemented these basic principles by 
incorporating state units and two types of error units (“bottom-up” error 
units encoding “prediction error” and “top-down” error units encoding 
“top-down” error or bias, see Algorithm below) at each of the three 
linguistic layers of the architecture (the topmost conceptual layer only 
contained state units). Within each linguistic level, the state and error 
units shared one-to-one connections. Across successive levels, each 
higher-level state unit was connected to lower-level error units via 
many-to-many connections that we hand-coded using two matrices, V 
and W. 

The V matrix coded the feedback connections that specified the 
generative parameters of the model; that is, each column of the V matrix 
specified how a given higher-level “latent cause” generated an idealized 
noise-free pattern of observations at the lower level. In our generative 
model, each individual concept at the highest level layer (e.g. {ball}) 
served as a latent cause of a distinct combination of semantic features (e. 
g. the combination of <round>, <game>, <small> and < bouncy>). In 
turn, each unique combination of semantic features served as a latent 
cause of a specific lexical representation (e.g. ball), which itself served as 
the latent cause for a distinct set of orthographic features at the lowest 
level of the model (e.g. “B-A-L-L"), see Fig. 2. The W matrix was simply 
the transpose of matrix V, and encoded the feedforward connections. 

The lowest orthographic level included 104 sets of state/error units, 
each encoding one of 26 letter identities (A-Z) at one of four possible 
spatial positions (following McClelland & Rumelhart, 1981). 

The middle lexical level included 1579 sets of state/error units, each 
representing a four-letter word in the model’s lexicon (e.g., baby, lime). 
In most of our simulations, we used orthographic inputs that corre-
sponded to 512 of the 1579 lexical units in the model’s architecture. As 
discussed below, for each these critical words, orthographic neighbor-
hood size, semantic richness and frequency (each operationalized as 
described below) were uncorrelated. The remaining words in the 
model’s lexicon primarily served to increase the range and variability of 
orthographic neighborhood size for inputs presented during our simu-
lations, as described below. The third semantic level included 12,929 
state/error units, each representing a unique semantic feature (e.g., 
<small>, <human>; following Cheyette & Plaut, 2017; Rabovsky & 
McRae, 2014). 

The orthographic-lexical matrices connected lower-level orthographic 
error units with higher-level lexical state units. These matrices specified 
the spelling of each word; that is, each column in the V matrix specified 
the mapping between a particular lexical item and the correct position of 

Fig. 1. Predictive coding model architecture. State units at three levels of lin-
guistic representation (Orthographic, Lexical and Semantic) and at the highest 
conceptual layer are depicted as small circles within the large ovals. Error units 
at each of the three levels of linguistic representation are depicted as small 
circles within the half arcs. Dotted arrows indicate one-to-one connections 
between error and state units at the same level of representation. Solid arrows 
indicate many-to-many connections between error and state units across levels 
of representation. These many-to-many connections were specified using hand- 
coded weight matrices: W (feedforward) and V (feedback). VLO/WOL: Connec-
tions between the lexical and orthographic level; VSL/WLS: Connections be-
tween the semantic and lexical level; VDS/WSD: Connections between 
conceptual and semantic level. We schematically depict the activity pattern of 
the model’s state units after it has settled on the representation of the item, ball. 
Different shades of yellow are used to indicate each state unit’s strength of 
activity. At the Orthographic level, four state units are activated: B in the first 
position, A in the second position, and L in the final two positions. At the 
Lexical level, the unit corresponding to ball is mostly strongly activated, and its 
orthographic neighbor gall is partly activated because it shares three letters 
with ball. At the Semantic level, the units corresponding to the semantic fea-
tures of ball (<bouncy>, etc.) are shown with different levels of activation. At 
the highest Conceptual layer, the unit corresponding to the representation of 
ball is most strongly activated. Because the model has settled, activity within 
error units at all levels is minimal. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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each letter (e.g., ball → B in position 1, A in position 2, L in position 3, 
and L in position 4; see Fig. 2). This resulted in each lexical item having a 
particular orthographic neighborhood size, which, for the purpose of our 
simulations, was defined as the number of lexical units with which it 
shared 3 letters. Because the lexicon included >1500 words, the lexical 
items in the model took on a wide range of orthographic neighborhood 
sizes, ranging from 0 to 21. 

The lexico-semantic matrices connected lower-level lexical error units 
with higher-level semantic state units. These matrices specified the 
meaning of each word; that is, each row in the V matrix specified the 
mappings between each lexical unit and its particular set of semantic 
features (e.g., ball → < round>, <bouncy>, etc.). To define the semantic 
richness of each of the 512 critical lexical units, we assigned half of these 
items 18 semantic features (semantically rich items) and the other half 9 
semantic features (non-rich items), based on a median split on their 
concreteness ratings taken from Brysbaert, Warriner, and Kuperman 
(2014). Each of these 512 words shared between 0 and 8 semantic 
features with at least one other lexical unit, allowing us to simulate ef-
fects of semantic relatedness on the N400. For simplicity, each of the 
remaining 1067 lexical units was assigned 9 unique semantic features. 

In order to set the frequency of lexical items within the model, we 
modified the strength of each item’s unique set of feedback connections 
(see Fig. 2). In principle, there are multiple ways to encode lexical fre-
quency into the model. Because knowledge of lexical frequency is ac-
quired over a long period of time and reflects a stable prior (Norris, 

2006), we chose to encode this bias into the top-down (feedback) 
weights of the network (see Spratling, 2016a), rather than as a more 
transient bias in the form of “resting level" activations in the state units 
(cf. McClelland & Rumelhart, 1981). Specifically, we increased the value 
of each word’s entries in the V matrices with a value that was propor-
tional to its SUBTLEX-US frequency (Brysbaert & New, 2009)). This 
score was obtained by shifting and scaling the log frequencies of all 1579 
words in the model’s lexicon so that they fell into the [0, 0.1] range. This 
range was selected so that the addition of frequency scores did not 
dramatically alter the mean and maximum value of the connections in 
any matrix. 

2.2. The predictive coding algorithm 

The architecture described above implemented the predictive coding 
algorithm — an optimization algorithm that approximates Bayesian 
inference, i.e. the process of inferring higher-level latent causes (i.e., 
columns of the V matrices) from particular patterns of observations (see 
Spratling, 2016a; Spratling, 2017). State units at each level represent the 
information that is being inferred, regardless of its predictability. The 
observed pattern encoded by state units at each level can be conceptu-
alized as a dynamically changing “target” that higher-level state units 
are trying to reconstruct. Error units encode the difference (i.e. residual 
information) between the observed state patterns and the top-down 
predictions or reconstructions generated by the level above. 

As noted under Architecture, we incorporated two types of error 
units that encode two types of errors (cf. Rao & Ballard, 1999, see 
Supplementary Materials). First, “bottom-up error units” represented 
prediction error — residual information encoded within the observed 
state patterns that was not present within the top-down reconstructions 
generated by state units at the level above. This prediction error served 
as an update signal of the state units at the level above so that they 
generated better reconstructions on the next iteration of the algorithm. 
Second, “top-down error units” computed residual information encoded 
within the top-down reconstructions that was not present within the 
observed state patterns. This served as a top-down bias3 within state units 
for modifying the state patterns at the same level, so that they served as a 
better target for state units at the level above. 

Over multiple iterations of the algorithm, as states units at each level 
are updated, both the magnitude of the prediction error and the top- 
down bias decrease, and the model reaches a global, internally consis-
tent state that can accurately explain the bottom-up input at multiple 
levels of representation. 

The specific predictive coding algorithm we used in the present study 
was a minimally modified version of the Predictive Coding/Biased 
Competition-Divisive Input Modulation algorithm (Spratling, 2008; 
Spratling, 2016b; see Supplementary Materials for details on how the 
original version was modified). This algorithm shares many processing 
principles with the influential predictive coding approach developed by 
Rao and Ballard (1999). However, the error units compute the residual 
information via element-wise division rather than element-wise sub-
traction (see Spratling, 2008). This ensures rapid convergence of the 
algorithm and guarantees that the activity across all units remains non- 
negative, similar to biological neurons. 

As illustrated schematically in Fig. 3, at each iteration, n, of the 
predictive coding algorithm, the following processes occur in sequence 
at each level of the hierarchy.  

1) The updating of state units 

At each level, state units are updated based on (a) the bottom-up 

Fig. 2. Schematic illustration of the generative feedback connections for two 
words in the model’s lexicon. Each circle indicates a representational node, and 
the blue arrows indicate feedback connections between layers. Note that, for 
simplification, this diagram does not distinguish between state and error units. 
In the model itself, however, the feedback connections linked higher-level state 
units with lower-level error units, see Fig. 1. To specify the frequency of each 
lexical item, we modified the connection strengths of its unique set of feedback 
connections. This is depicted schematically using arrow thickness. For example, 
the arrows are thicker for ball than gall because ball is more frequent. Although 
each lexical item has its own unique set of connections, these connections can 
terminate on shared nodes. For example, the lexical-orthographic feedback 
connections for ball and gall both terminate on the same A2, L3, and L4 nodes, 
and the semantic-lexical feedback connections for the semantic features, 
<round>, <game>, <small> and < bouncy>, all terminate on the same lexical 
node, ball. In the model itself, this resulted in each lexical item having a 
particular “orthographic neighborhood size” and a particular “semantic rich-
ness”. For example, ball and gall are orthographic neighbors, and the semantic 
richness of the word ball is greater than gall because the former lexical item is 
connected to more semantic features (4 vs. 2). For the purpose of our simula-
tions, we defined each lexical item’s orthographic neighborhood size as the 
number of lexical units with which it shared 3 letters. We defined “semantically 
rich” items as those that were connected to 18 features, and “non-rich” items as 
those that were connected to 9 features. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 

3 Note that this quantity is sometimes referred to as “top down error” (Rao & 
Ballard, 1999). Here, we refer to it as “top-down bias” to highlight its functional 
role as acting as a bias for updating state units. 
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input on the current iteration (n) and (b) a top-down bias (tdB) that was 
computed on the previous iteration (n-1). At the orthographic level, the 
bottom-up input is the orthographic vector provided by the modeler; at 
higher levels, the input is the prediction error (PE) that is computed at 
the level below on the current iteration of the algorithm. The updated 
state is computed through element-wise multiplication: STn =

STn− 1⊙(tdBn− 1 + P̃En)

Thus, at a given level of the hierarchy, state units are updated based 
on prediction error computed at the level below on the same iteration of 
the algorithm, so that these state units will generate more accurate top- 
down reconstructions of activity at the level below on the subsequent 
iteration of the algorithm. In contrast, the top-down bias, which was 
computed at the same level on the previous iteration of the algorithm, 
modifies the state pattern such that it is brought closer to the top-down 
reconstruction that was generated by the level above on the previous 
iteration, i.e., so that this state pattern serves as a better “target” for 
these higher-level reconstructions/predictions on the current iteration 
of the algorithm.  

2) The computation of residual information: Prediction error and Top- 
down bias 

The error units at each level represent the residual difference in in-
formation between the top-down reconstruction that was computed on 
the previous iteration of the algorithm (tdRn-1) and the updated state 
pattern at the same level on the current iteration (STn). Within the 
bottom-up error units, the updated state pattern (at the same level) is 
divided elementwise by the top-down reconstruction (tdR) from the 
level above (which was computed on the previous iteration of the al-
gorithm), yielding prediction error: PEn = STn Ø tdRn-1. This prediction 
error encodes the residual information within the state units that is not 
present within the top-down reconstruction. It is multiplied by the W 
matrix (P̃E = W⋅PE), w hich transforms its dimensionality so that it can 
serve as the bottom-up input for updating state units at the level above 
on the current iteration of the algorithm. 

Within the top-down error units, the top-down reconstruction, which 
was computed on the previous iteration of the algorithm, is divided 
elementwise by the current state through element-wise division, 
yielding a top-down Bias (tdB): tdBn = tdRn-1 Ø STn. This top-down bias 
encoded residual information within the top-down reconstructions that 
was not present within the state units. It was passed to state units at the 
same level through one-to-one connections, to be used to bias state 
updates on the subsequent iteration of the algorithm (n + 1).  

3) The generation of top-down reconstructions (predictions) to be used 
on the subsequent iteration 

After the state units are updated at all levels, they generate a top- 
down reconstruction (tdR) of the pattern of activity at the level below 
by multiplying the current higher-level state vector (STn) by the V 
(generative) matrix, i.e., V⋅ STn = tdRn. This top-down reconstruction 
will be used to compute the prediction error and the top-down bias on 
the subsequent iteration of the algorithm (as described under step 2). 

2.3. Simulations 

We simulated a wide range of benchmark phenomena in the N400 
literature. These included: (1) Lexical effects (effects of orthographic 
neighborhood size on words and pseudowords, and effects of lexical 
frequency and semantic richness on words); (2) Priming effects (repe-
tition priming and semantic priming); (3) Contextual effects (lexical 
probability, contextual constraint, effects of anticipatory semantic 
overlap on words, and effects of anticipatory orthographic overlap on 
words and pseudowords), and (4) Interactions between each of the 
lexical variables with repetition priming and lexical probability. Details 
of how we carried out each specific simulation are given in the Results 
section. 

For simulations involving only real words, we used orthographic 
input vectors that corresponded to 512 four-letter “critical words” in the 
model’s lexicon. As noted above, these words were selected to have a 
wide range of lexical frequencies, orthographic neighborhood sizes, and 
semantic richness values (half rich, half non-rich), and, by design, these 
three variables were all uncorrelated (|r| < 0.07) across our 512 critical 
words. For simulations involving pseudowords, we used 400 words and 
400 pseudowords that were matched on orthographic neighborhood 
size. 

In all simulations, after initializing the model, we presented the 
bottom-up orthographic input by clamping an orthographic vector that 
corresponded to the stimulus of interest. We then ran the predictive 
coding algorithm for 20 iterations. 

2.4. Operationalization of the N400 and visualizations 

As explained above, in predictive coding, bottom-up error units 

Fig. 3. Predictive coding algorithm. Schematic illustration of the predictive 
coding algorithm operating on the nth iteration, following the presentation of 
bottom-up orthographic input. As in Fig. 1, at each layer, the large ovals contain 
state units, the red half-arcs contain bottom-up error units, and the blue half- 
arcs contain top-down error units. Each variable’s subscript indicates the iter-
ation on which it was computed. Solid arrows indicate the linear transformation 
of a variable through the V and W matrices. Dotted arrows indicate the copying 
of a variable. The same three steps occur in sequence at each level of repre-
sentation: (1) State units are updated, based on (a) the top-down bias computed 
at the same level on the previous iteration, and (b) the prediction error 
computed at the level below on the same iteration (STn←STn− 1⊙[tdBn− 1 + P̃En] ), 
and their values are copied to the top-down and bottom-up error units at the 
same level. (2) Bottom-up error units compute prediction error (PEn) through 
elementwise division (STn Ø tdRn-1) and pass this prediction error up to state 
units at the level above by transforming its dimensionality (P̃En = W⋅PEn), and 
top-down error units compute top-down bias (tdBn) and copy this top-down 
bias to state units at the same level so that it is ready to update the state 
units on the subsequent [n + 1]th iteration); (3) State units generate top-down 
reconstructions of activity at the level below via linear transformation by the V 
(generative) matrix, i.e., V⋅ST = tdR, and pass these reconstructions down to the 
error units at the level below. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

S. Nour Eddine et al.                                                                                                                                                                                                                           



Cognition 246 (2024) 105755

7

encodes “prediction error” — a vector-valued quantity that represents 
the residual information encoded by state units that is not already pre-
sent within top-down reconstructions. Thus, the sum of all elements in 
each prediction error vector simply corresponds to the total activity 
produced by the bottom-up error units. Based on the large psycholin-
guistic literature linking the N400 to stimulus-induced processing at the 
lexical and semantic levels of representation, we elected, a priori, to 
operationalize the N400 as the total activity produced by these bottom- 
up error units at the lexical and semantic levels of representation at each 
iteration of the algorithm following stimulus presentation. We refer to 
this scalar value simply as lexico-semantic prediction error. 

For each simulation, we constructed a full time course of the simu-
lated N400 by averaging lexico-semantic prediction error across all 
critical items on each of the 20 iterations of the algorithm following 
stimulus presentation. For completeness, in Supplementary Materials we 
also show the time course of prediction error produced at the semantic, 
lexical, and orthographic levels separately (Supplementary Figs. 1, 2 and 
3). Except where noted otherwise, variables that modulated lexico- 
semantic prediction error affected the prediction error produced at the 
lexical and semantic levels separately. 

2.5. Statistical analyses 

For all statistical analyses, our dependent measure was the mean 
magnitude of the total lexico-semantic prediction error produced by 
each item, averaged across iterations 2 to 11 following stimulus pre-
sentation. In all cases, this constituted a 10-iteration time window that 
surrounded the peak of the error response. Although this window was 
chosen somewhat arbitrarily by visual inspection, we note that the 
pattern of effects we describe does not vary with the choice of time 
window. 

To examine the effects of lexical variables, which varied between 
items, we carried out simple regression analyses. To examine the effects 
of priming and contextual variables, which varied within items, we 
carried out linear mixed effects regressions using lme4 package version 
1.1–31 (Bates, Mächler, Bolker, & Walker, 2015) in R version 4.2.2 (R 
Core Team, 2022). In these models, we first attempted to fit the maximal 
random effects structure. In the case of convergence failures, we 
simplified the random effects structure following the recommendations 
of Barr, Levy, Scheepers, and Tily (2013). Statistical significance was 
assessed using a type-III sums of squares estimation, with p-values 
estimated using the Satterthwaite approximation (Satterthwaite, 1946) 
using lmerTest version 3.1–3 (Kuznetsova, Brockhoff, & Christensen, 
2017). 

3. Results 

3.1. Time course of the simulated N400 

In all simulations, the time course of the simulated N400 (lexico- 
semantic prediction error) showed a rise-and-fall waveform-like 
morphology, similar to the empirical N400. After stimulus onset, the 
magnitude of the lexico-semantic prediction error rose to a peak at 
around iteration 5 before steadily decreasing to a minimum by iteration 
20. This fall in lexico-semantic prediction error occurred when the 
model had successfully settled on the particular set of conceptual, se-
mantic and lexical state units that correctly encoded the bottom-up 
orthographic input. At this point, the state units were producing top- 
down predictions/reconstructions that accurately predicted activity at 
the level below, thereby suppressing activity produced within these 
error units (i.e. prediction error). 

Although the fall of lexico-semantic prediction error provides evi-
dence for successful lexico-semantic access, we also wanted to make 
contact with previous word recognition models that operationalized 
successful lexical access as the selection of one lexical item out of a pool 
of possibilities. Therefore, in each simulation, we set a threshold of 3.0 

on the activity accumulating within the lexical state units, and compared 
the identity of the first lexical state unit to cross this threshold with the 
identity of the true input: If these matched, then we took this as evidence 
that the model had successfully identified the orthographic input (see 
Supplementary Fig. 5). With the exception of one condition in one 
simulation,4 within 20 iterations of stimulus onset, the model correctly 
identified the input on >99% of trials in all conditions (i.e. inaccurate 
performance on at most two trials per condition). 

3.2. Effects of lexical variables 

3.2.1. Effect of orthographic neighborhood size on words 
Empirically, words with more orthographic neighbors (e.g. ball: bull, 

call, bail) produce a larger N400 response than words with fewer 
neighbors (e.g., kiwi; Holcomb et al., 2002; Laszlo & Federmeier, 2011). 

In our model, orthographic neighborhoods were determined by the 
pattern of weights (specified by the V and W matrices) that connected 
the lexical and orthographic units (see Fig. 2 in Methods). For our 
simulations, we operationalized the orthographic neighborhood size 
(ONsize) of each of our 512 critical lexical items as the number of words 
in the model’s lexicon with which it overlapped in three letter positions. 
For example, ball and gall are orthographic neighbors because they share 
A2, L3, and L4. 

Mirroring the empirical findings, we found that lexico-semantic 
prediction error was larger on words with a larger versus smaller 
ONsize (b = 32.63, t = 43.82, p < .001, see Fig. 4A). 

3.2.2. Effect of orthographic neighborhood size on pseudowords and effect 
of lexical status 

Empirical studies have shown that orthographic neighborhood size 
not only modulates the amplitude of the N400 produced by real words 
(WISH), but also by pseudowords (*WUSH, Laszlo & Federmeier, 2011; 
Holcomb et al., 2002). Moreover, the magnitude of this effect is the same 
on words and pseudowords (Laszlo & Federmeier, 2011). On the other 
hand, several studies have reported that pseudowords elicit larger 
N400s than words (*BAVE > GAVE; Bentin, 1987), even when con-
trolling for orthographic neighborhood size (Holcomb et al., 2002; 
Meade, Midgley, Dijkstra, & Holcomb, 2018; Braun et al., 2006; 
although see Laszlo & Federmeier, 2011). 

To determine whether our model could explain these effects of 
orthographic neighborhood size on the N400 produced by pseudowords, 
and to examine the effect of lexical status (words vs. pseudowords) on 
lexico-semantic prediction error, we carried out another set of simula-
tions, this time using a new set of 400 words and 400 pseudowords that 
were designed to have identical neighborhood sizes (see Section 3.6 
below for details of how these stimuli were developed). Consistent with 
the empirical findings, we saw an effect of orthographic neighborhood 
size on pseudowords (see Fig. 4B), and this effect did not differ between 
the words and pseudowords (Main effect of ONsize: b = 24.78, t = 27.03, 
p < .001; no interaction between ONsize and Lexical Status: b = − 0.09, t 
= − 0.09, p = .93). Also consistent with many of the empirical findings 
(Braun et al., 2006; Holcomb et al., 2002; Meade et al., 2018), there was 
also a main effect of Lexical Status due to a larger lexico-semantic pre-
diction error on pseudowords than words (b = − 33.69, t = − 36.77, p < 
.001). 

These effects of orthographic neighborhood size on lexico-semantic 

4 For reasons we will return to in the Discussion, the (related) orthographi-
cally overlapping inputs in the anticipatory orthographic overlap simulation 
(see Section 3.5) required significantly more time to cross threshold. Indeed, for 
nearly half the items (48%), no lexical state unit crossed the threshold within 
the first 20 iterations after stimulus onset. However, amongst the half that 
crossed the threshold, 83% matched the target. Moreover, when the model was 
given more time to process the input (i.e. up to 40 iterations), all items crossed 
the threshold, and accuracy improved from 83% to 91%. 
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prediction error arose because when the orthographic inputs (both 
words and pseudowords) with large neighborhood sizes arrived at the 
lexical level, they partially activated a large number of closely over-
lapping lexical state units. This produced a larger lexical prediction 
error, which, in turn, activated semantic state units of all these neigh-
bors, and therefore a larger semantic prediction error. 

In addition to being larger in magnitude, the lexico-semantic pre-
diction error produced by inputs with larger orthographic neighborhood 
sizes took slightly longer to fall than the prediction error produced by 
inputs with smaller neighborhood sizes, i.e. a delayed downslope in the 
simulated N400, see Fig. 4A and B. This slight delay in minimizing 
lexico-semantic prediction error occurred because it took the state units 
slightly longer to settle on the correct conceptual and semantic repre-
sentations. Intriguingly, a visual examination of empirical data for these 
contrasts appears to show a similar delayed downslope in the N400 in 
some cases (e.g. Laszlo and Federmeier (2011) Fig. 3), although this has 
not been systematically examined in the literature. 

The reason why pseudowords (*WUSH) produced a larger lexico- 
semantic prediction error than real words, even when controlling for 
orthographic neighborhood size, is that, after activating multiple lexical 
candidates with varying degrees of orthographic overlap (WISH, BUSH, 
LUSH, etc.), the model was unable to settle on a single lexico-semantic 
state that could explain the bottom-up input. 

3.2.3. Effect of lexical frequency 
The amplitude of the N400 is smaller to words of higher frequency (e. 

g., ball) than to words of lower frequency (e.g. gall; Rugg, 1990; Van 

Petten & Kutas, 1990; Laszlo & Federmeier, 2014; Hauk, Davis, Ford, 
Pulvermuller, & Marslen-Wilson, 2006). Within a Bayesian framework, 
the effects of frequency can be conceptualized as a prior belief during 
perceptual inference (Delaney-Busch, Morgan, Lau, & Kuperberg, 2019; 
Norris, 2006; Spratling, 2016a). In order to bias the model’s prior be-
liefs, we incorporate the frequency of each word in the model’s top- 
down generative weights. Specifically, as described under Model Ar-
chitecture (and see Fig. 2 for a schematic depiction), for each lexical 
item, we increased the strength of its unique set of feedback connections 
in proportion to its SUBTLEX-US frequency (Brysbaert & New, 2009). 
This ensured that, all else being equal, higher frequency items received 
stronger feedback activity (top-down reconstructions) from higher-level 
state units as the predictive coding algorithm approximated Bayesian 
inference. (Note that if we had encoded frequency in the bottom-up 
feedforward weights, this would not have not biased the model’s 
reconstructions). 

As expected, our simulations showed that higher frequency words 
produced a smaller lexico-semantic prediction error than lower fre-
quency words (b = − 4.05, t = − 5.43, p < .001; see Fig. 4C). This is 
because the stronger feedback weights allowed higher levels of the 
network to generate predictions that better suppressed the production of 
prediction error. When we looked at each level separately, we found that 
this suppression appeared to be mostly limited to the semantic level (see 
Supplementary Fig. 1). 

3.2.4. Effect of semantic richness 
The N400 is generally larger to words with more concrete meanings 

Fig. 4. Effects of lexical variables on the time course of lexico-semantic prediction error. In this and subsequent figures, in each plot, the x-axis shows the number of 
iterations after stimulus onset, and the y-axis shows the total lexico-semantic prediction error (PE) (arbitrary units), averaged across items within each condition. 
Because the standard errors are very small and thus barely visible, we opted not to include them in the plots. A. High vs. Low Orthographic Neighborhood size 
(ONsize), based on a median split across 512 critical words. High ONsize words elicited a significantly larger lexico-semantic prediction error than Low ONsize words. 
B. High vs. Low ONsize, based on a median split across 400 pseudoword items. High ONsize pseudowords elicited a significantly larger lexico-semantic prediction 
error than Low ONsize pseudowords. C. High vs. Low Frequency, based on a median split across 512 critical words. Low frequency items elicited a significantly larger 
lexico-semantic prediction error than high frequency items. D. Rich vs. Non-rich (lexical items connected to 18 vs. 9 semantic features). Rich items elicited a 
significantly larger lexico-semantic prediction error than Non-rich items. 
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(Holcomb et al., 1999; Kounios & Holcomb, 1994; Lee & Federmeier, 
2008), more semantic associates (Laszlo & Federmeier, 2011), and a 
larger number of semantic features (Amsel, 2011; Rabovsky et al., 
2012b; but see Kounios et al., 2009). 

Following previous models (Cheyette & Plaut, 2017; Rabovsky & 
McRae, 2014), to capture these effects, we operationalized the semantic 
richness of each word in the model’s lexicon as the number of semantic 
features with which it was connected. As described under Model Ar-
chitecture (see Methods), each of our 512 critical lexical items was 
connected to either 18 features (Rich) or 9 features (Non-rich). 

Our simulations show that semantically rich words produced a larger 
lexico-semantic prediction error than the Non-rich words (Richness: b =
9.03, t = 12.12, p < .001; see Fig. 4D). This follows from the simple fact 
that prediction error is summed elementwise across all error units. 
Therefore, if a lexical unit is linked to a larger number of semantic units, 
its activation will produce a larger total prediction error. 

Of note, the scalp distribution of the semantic richness/concreteness 
effect on the N400 is more frontal than the classic centroparietal N400 
effect (Holcomb et al., 1999; Kounios & Holcomb, 1994; Lee & Feder-
meier, 2008). It has been hypothesized that this is because the effect 
originates primarily at the level of semantic features, rather than at the 
lexical level that links these features to linguistic form (e.g. Kounios & 
Holcomb, 1994). Consistent with this account, we note that when we 
looked at the effect of richness on prediction error generated the lexical 
and semantic levels separately, the effect did indeed appear to stem 
primarily from prediction error produced at the semantic rather than the 
lexical level (see Supplementary Materials Fig. 1). 

3.3. Effects of word-pair priming 

In a typical priming paradigm, pairs of “prime” and “target” words 
are presented sequentially, with the prime being either related or un-
related to the target along some dimension. Empirically, the amplitude 
of the N400 is smaller to repeated than non-repeated targets in repeti-
tion priming paradigms (e.g. lime – lime vs. flow – lime: Rugg, 1985; Misra 
& Holcomb, 2003) and smaller to semantically related than unrelated 
targets in semantic priming paradigms (e.g. sour – lime vs. flow – lime: 
Bentin et al., 1985; Rugg, 1985; Holcomb, 1988; Holcomb & Neville, 
1990). Additionally, several studies have shown that the repetition 
priming effect is larger than the semantic priming effect (Deacon, 
Dynowska, Ritter, & Grose-Fifer, 2004; Rugg, 1985). 

To simulate these priming effects, we clamped an orthographic 
“prime” input for 20 iterations, followed by two blank iterations (all 
input units clamped to zero), followed by either a related or unrelated 
“target” input for an additional 20 iterations. 

3.3.1. Effect of repetition priming 
In the repetition priming simulations, the prime was either identical 

to the target, or it was unrelated, sharing no semantic features with the 
target. Consistent with the empirical findings, we found that the 
repeated targets produced a smaller lexico-semantic prediction error 
than the non-repeated targets (b = − 125.52, t = − 140.3, p < .001; see 
Fig. 5A). 

3.3.2. Effect of semantic priming 
In the semantic priming simulations, the prime either shared eight 

semantic features (related condition) or no semantic features with the 
target (unrelated condition). Again consistent with the empirical find-
ings, we found that the semantically related targets produced a smaller 
lexico-semantic prediction error than the unrelated targets (b =

− 107.25, t = − 87.15, p < .001; see Fig. 5B). 
Finally, consistent with the empirical findings, lexico-semantic pre-

diction error was smaller to repeated than to semantically related targets 
(b = − 34.67, t = − 20.46, p < .001). 

The reason why the simulated N400 was attenuated to primed 
(versus unprimed) targets is because the presentation of the prime led 
the model to fully converge (in the case of repetition priming) or 
partially converge (in the case of semantic priming) on the lexical and 
semantic state units that corresponded to the target. This resulted in 
more accurate top-down reconstructions and therefore a smaller lexico- 
semantic prediction error to primed versus unprimed targets. 

We note that in addition to being smaller in amplitude, the simulated 
N400 evoked by primed targets peaked earlier than that evoked by 
unprimed targets (see Fig. 5A and B). Empirically, there is some evi-
dence that repeated targets produce a waveform that diverges earlier 
from that produced by unrepeated targets, between 200 and 300 ms 
(Rugg, Doyle, & Melan, 1993; Rugg & Nieto-Vegas, 1999) possibly 
reflecting a distinct N250 effect (see Grainger & Holcomb, 2009; Hol-
comb & Grainger, 2006; Kiyonaga, Grainger, Midgley, & Holcomb, 
2007). However, in general, the peak latency of the N400 is fairly stable 
(Federmeier & Laszlo, 2009). One possible reason for this discrepancy is 
that the hierarchical structure employed in the current predictive coding 
model was unrealistically shallow, resulting in an artificial proximity 
between the lexico-semantic states and the bottom-up input. We will 
return to this point in the Discussion under Limitations and Future 
Directions. 

3.4. Contextual effects 

During language comprehension, the amplitude of the N400 is 
strongly influenced by the broader sentence and discourse context. 
Predictive models of online language comprehension posit that this is 

Fig. 5. Effects of word-pair priming on the time course of lexico-semantic prediction error. A. Effect of repetition priming. B. Effect of semantic priming: Unrelated 
(zero semantic features shared between prime and target) vs. Related (eight semantic features shared between prime and target). 
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because comprehenders incrementally use the prior context to infer a 
higher-level interpretation, which they use to generate top-down pre-
dictions that pre-activate lower lexical representations (e.g., Feder-
meier, 2007; Kuperberg & Jaeger, 2016, Section 3.5; Wang, Kuperberg, 
& Jensen, 2018). 

In order to simulate this top-down predictive pre-activation, we 
clamped the expected state unit at the highest conceptual layer of the 
model with the desired percentage of pre-activation and allowed this 
predicted information to flow down the model for 20 iterations. We did 
this by fixing the total level of activation to a constant value (see Sup-
plementary Materials) and distributing the remaining activation evenly 
across the remaining units. During this top-down pre-activation phase, 
the steps of the predictive coding algorithm remained unchanged: the 
conceptual layer generated semantic reconstructions, which induced a 
top-down bias in the model’s semantic state units. These newly activated 
semantic states then produced reconstructions that led to the pre- 
activation of lexical state units, and so on down the network. After the 
20 iterations of pre-activation, we unclamped the expected conceptual 
state units at the top of the network and presented a new bottom-up 
input at the orthographic level for an additional 20 iterations. 

3.4.1. Effects of lexical probability 
The amplitude of the N400 is strongly influenced by the lexical 

probability of each word, given its prior context. The probability of a 
word can be estimated either using the cloze procedure (the proportion 
of participants who produce that word during a sentence completion 
task (Taylor, 1953), or using large language models (e.g., GPT-3, Brown 
et al., 2020). Several studies have shown that the amplitude of the N400 
is inversely proportional to these estimates of lexical probability in 
context (studies using cloze estimates: Kutas & Hillyard, 1984; DeLong 
et al., 2005; Wlotko & Federmeier, 2012; Brothers, Morgan, Yacovone, 
& Kuperberg, 2023; studies using estimates from large language models: 
Michaelov, Coulson, & Bergen; Szewczyk & Federmeier, 2022; Heilbron, 
Armeni, Schoffelen, Hagoort, & de Lange, 2022). 

To simulate the effect of lexical probability on the N400, we pre-
sented each of our 512 critical words at four different levels of proba-
bility: 99%, 50%, 25% and uniform (1/[total words] = 1/1579 =
0.06%). In the linear mixed effects analyses, probability was standard-
ized and served as a within-item predictor. As expected, we observed a 
graded reduction in lexico-semantic prediction error as lexical proba-
bility increased (b = − 87.42, t = − 54.02, p < .001; see Fig. 6A). This is 
because, with increasing predictability, the model was able to settle on 
an increasingly more accurate set of semantic and lexical states prior to 
the appearance of the target word. After stimulus onset, this resulted in 
more accurate top-down reconstructions and greater suppression of 
lexico-semantic prediction error.5 

We note that, similar to the priming simulations, the smaller the 
simulated N400s, the earlier their peak latencies (see Fig. 6A). Again, 
this contrasts with the empirical N400: Although there is some evidence 
that the N400 peaks slightly earlier to highly predictable words in sen-
tence contexts (Brothers, Swaab, & Traxler, 2015), and slightly later to 
more implausible words (Brothers et al., 2015; Nieuwland et al., 2020), 
for the most part, the peak of the N400 predictability effect is stable 
(Federmeier & Laszlo, 2009). As noted above in relation to priming, we 

think that this discrepancy may, in part, be due to the current model’s 
relatively shallow hierarchical structure (see Discussion, Limitations 
and Future Directions). 

3.4.2. No effect of Constraint on unpredicted words 
The amplitude of the N400 is not sensitive to the lexical constraint of 

the prior context, when controlling for lexical probability. For example, 
the N400 response is equally large to unexpected but plausible words 
that violate strong lexical predictions in a high constraint contexts (e.g. 
“Every morning he took his dog for a swim”, where the word “walk” was 
expected) and to unexpected but plausible words in low constraint 
contexts (e.g. “Helen reached up to dust the dresser”) (Federmeier, Wlotko, 
De Ochoa-Dewald, & Kutas, 2007; Kuperberg et al., 2020; Kutas & 
Hillyard, 1984). 

To simulate the null effect of Constraint (over and above predict-
ability), we presented unexpected critical words in either a high 
constraint condition, in which we strongly pre-activated a different 
randomly selected word (99%), or in a low constraint condition in which 
all words were given uniform pre-activation (0.06%). In the linear 
mixed effects analysis, with Constraint serving as a categorical within- 
items predictor, we found that there was no difference in the magni-
tude of lexico-semantic prediction error produced by the high constraint 
unexpected and the low constraint unexpected inputs (Constraint: b = 0.23, 
t = 0.85, p = .40; see Fig. 6B). This is because lexico-semantic prediction 
error is only sensitive to the residual lexico-semantic information 
encoded within the bottom-up input that is not predicted by the level 
above. The amount of residual lexico-semantic information encoded 
within an unexpected input is the same, regardless of whether prior 
incorrect predictions were concentrated over one specific set of semantic 
features/lexical candidate, or whether they were spread diffusely over 
multiple semantic features/lexical candidates. 

3.4.3. Effect of anticipatory semantic overlap 
In addition to its sensitivity to lexical probability, the amplitude of 

the N400 is also sensitive to the semantic relationship between a pre-
dicted word and the observed bottom-up input (Federmeier & Kutas, 
1999; Kutas & Hillyard, 1984). For example, Federmeier and Kutas 
(1999) presented participants with highly constraining contexts, e.g. 
“They wanted to make the hotel look more like a tropical resort. So along the 
driveway, they planted rows of…”, followed by critical words that were 
highly predictable (e.g., palms), lexically unpredictable (<1% proba-
bility) but with semantic features that overlapped with the expected 
continuation (e.g. pines), or lexically unpredictable (<1% probability) 
but with fewer overlapping expected features (e.g. tulips). They observed 
a graded reduction in the N400 response across the three conditions 
(palms < pines < tulips). Although this anticipatory semantic overlap effect 
on the N400 was originally described on unexpected implausible targets 
(Kutas & Hillyard, 1984; Federmeier & Kutas, 1999; for more recent 
replications, see DeLong, Chan, & Kutas, 2019; Ito, Corley, Pickering, 
Martin, & Nieuwland, 2016), it is also seen on plausible continuations 
(both zero-cloze: Thornhill & Van Petten, 2012; DeLong & Kutas, 2020, 
and non-zero cloze: Brothers et al., 2023). 

To simulate this effect, we pre-activated the model with each of our 
512 words, assigning the conceptual states a probability of 99% and 
clamping them for 20 iterations. We then presented the model with (a) 
the same word that was pre-activated (expected), (b) a different word 
that shared eight semantic features with the expected word (unexpected 
semantically overlapping), or (c) a different word that shared no semantic 
features with the expected word (unexpected unrelated). We also ensured 
that the unexpected semantically overlapping and the unexpected unrelated 
words had minimal orthographic overlap with the expected words (0.38 
and 0.37 characters respectively) and that the extent of this overlap did 
not differ between the two conditions (t < 1, p = .73). 

As shown in Fig. 7A, consistent with the empirical findings, we saw a 
graded reduction of lexico-semantic prediction error across the three 
conditions, with the unexpected unrelated words producing a 

5 While it is well established that behavioral measures of processing difficulty 
and N400 amplitude decrease with increasing lexical probability, there has 
been some debate about whether this linking function is linear (Brothers & 
Kuperberg, 2021), logarithmic (Smith & Levy, 2013) or both, depending on the 
range of probabilities examined (Szewczyk & Federmeier, 2022). The predictive 
coding model used in these simulations is not well suited for addressing this 
question because we implemented top-down predictability manually. In addi-
tion, on informal inspection, the relationship between lexical probability and 
lexico-semantic prediction error (and indeed state activity) varied non- 
systematically with different hyperparameter choices. 
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significantly larger prediction error than the unexpected semantically 
overlapping words (b = 158.07; t = 61.42, p < .001), which, in turn, 
produced a significantly larger prediction error than the expected words 
(b = 95.27; t = 37.02, p < .001). 

The reason why lexico-semantic prediction error to the unexpected 
semantically overlapping words was attenuated is because the pre- 
activated expected conceptual representations produced re-
constructions that pre-activated shared semantic features, which, in 
turn, produced reconstructions that suppressed both lexical and se-
mantic prediction error. 

3.4.4. Effect of contextual constraint on the anticipatory semantic overlap 
effect 

In addition to showing an effect of anticipatory semantic overlap on 
the N400 produced by unexpected words in high constraint contexts, 
Federmeier and Kutas (1999) also showed that this effect interacted with 
contextual constraint (see also Ito et al., 2016 for a recent replication 
using a different set of materials); that is, the degree to which the N400 
was reduced in response to the unexpected semantically overlapping words 
(pines), relative to the unexpected unrelated words (tulips), was greater in 
the high constraint contexts than in the medium constraint contexts. 

To simulate this interaction between Semantic Overlap and 

Constraint, we carried out the same simulations as described above, 
except that instead of assigning the conceptual states a probability of 
99%, we assigned them a probability of 50%. We then compared the 
magnitude of prediction error produced by the unexpected unrelated and 
the unexpected semantically overlapping inputs across the high constraint 
and medium constraint conditions. As shown in Fig. 7B, there appeared to 
be a smaller difference in lexico-semantic prediction error between the 
unexpected unrelated and unexpected semantically overlapping words in the 
medium constraint condition (17% reduction) than in the high constraint 
condition (35% reduction). This was confirmed by a linear mixed-effects 
model that crossed Semantic Overlap (semantically overlapping, unre-
lated) with Constraint (high constraint, medium constraint), which showed 
that, in addition to a main effect of Semantic Overlap (b = − 45.45, t =
− 22.83, p < .001) and no main effect of Constraint (p = .48), there was a 
significant interaction between Semantic Overlap and Constraint (b =
− 49.82, t = − 17.69, p < .001). This is because the stronger pre- 
activation of conceptual and semantic features in the high constraint 
(99%) than in the medium constraint (50%) condition, led them produce 
more accurate reconstructions that resulted in a greater suppression of 
lexical and semantic prediction error to the semantically overlapping 
unexpected inputs. 

Fig. 6. Effects of Lexical Probability and Constraint on the time course of lexico-semantic prediction error. A. Effect of lexical probability: Lexico-semantic prediction 
error decreased with increasing lexical probability. B. Effect of Constraint. Lexico-semantic prediction error was equally large to high constraint unexpected (High-
Constr. Unexp.) and low constraint unexpected (Low Constr. Unexp.) inputs, relative to the expected inputs (High Constr. Exp). 

Fig. 7. Effects of anticipatory semantic overlap on the time course of lexico-semantic prediction error. A. In the high constraint condition (in which the model was pre- 
activated with 99% probability), lexico-semantic prediction error was largest to the unexpected unrelated words (Unexp. Unrelated), smaller to the unexpected 
semantically overlapping words (Unexp. Overlap) and smallest to the expected words. B. In the medium constraint condition (in which the model was pre-activated with 
50% probability), lexico-semantic prediction error also decreased across the three conditions. However, as indicated using arrows/shading, in this medium constraint 
condition, the difference in prediction error produced by the unexpected unrelated and the unexpected semantically overlapping words was smaller than this difference in 
the high constraint condition. 
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3.4.5. Effect of anticipatory orthographic overlap on words 
The N400 is also sensitive to the orthographic overlap between a 

predicted and encountered input (DeLong et al., 2019; Ito et al., 2016; 
Laszlo & Federmeier, 2009). For example, Laszlo and Federmeier (2009) 
presented participants with highly constraining sentence contexts, e.g. 
“The genie granted his third and final…”, followed by critical words that 
were expected (e.g., wish), unexpected (<1% probability) but with 
several letters in common with the expected word, i.e. unexpected 
orthographically overlapping (e.g. dish), or unexpected unrelated (<1% 
probability) with no letters in common with the expected word, but 
matched to the two other conditions on orthographic neighborhood size 
(e.g. claw). The authors observed a graded reduction of the N400 across 
the three conditions (wish < dish < claw). 

To simulate this anticipatory orthographic overlap effect, we used 400 
words from a set of stimuli that we developed for the purpose of these 
simulations (see Section 3.6 for details). We pre-activated the model 
with each of these 400 words, assigning the conceptual states a proba-
bility of 99% and clamping them for 20 iterations. We then presented the 
model with (a) the same word that was pre-activated (expected), (b) a 
different word that shared three letters (but no semantic features) with 
the expected word (unexpected orthographically overlapping), or (c) a 
different word that had minimal orthographic overlap (and no semantic 
overlap) with the expected word (unexpected unrelated). 

Consistent with the empirical findings, we saw a graded reduction of 
lexico-semantic prediction error across the three conditions over the 
period we used to simulate the N400, with the unexpected unrelated 
words producing a significantly larger prediction error than the unex-
pected orthographically overlapping words (b = 134.70; t = 115.47, p <
.001), which, in turn, produced a significantly larger prediction error 
than the expected words (b = 119.65; t = 97.77, p < .001). 

The reason why the unexpected orthographically overlapping words 
(DISH) and non-words (*WUSH) produced a smaller lexico-semantic 
prediction error than the unexpected unrelated words is because pre- 
activating the model with the expected word (wish) resulted in the 
generation of orthographic reconstructions (W-I-S-H) that partially 
suppressed the orthographic prediction error produced by the bottom- 
up input (D-I-S-H). Therefore, less orthographic prediction error 
flowed up the hierarchy, inducing only small updates in state units, and 
therefore smaller prediction errors at the lexical and semantic levels 
throughout the time period we used to operationalize the N400. 

We note that, although smaller in amplitude, the simulated N400 
produced by unexpected orthographically overlapping words had a more 
prolonged time course than that produced by the unexpected unrelated 
inputs, see Fig. 8A. We will return to the reasons for this in the Discus-
sion section. In the empirical literature, this type of prolongation of the 
N400 to unexpected orthographically overlapping words has not been 
described. However, this may be because following the N400 time 
window, unexpected orthographically overlapping words produce a pos-
teriorly distributed positive-going ERP component (the P600) (DeLong 
et al., 2019; Ito et al., 2016; Laszlo & Federmeier, 2009; Vissers, Chwilla, 
& Kolk, 2006), which would have masked any prolongation of the N400 
at the scalp surface (i.e. component overlap, see Kuperberg, Kreher, 
Sitnikova, Caplan, & Holcomb, 2007; Brouwer & Crocker, 2017). One 
way of exploring this possibility would be to carry out the same study 
using MEG where this type of spatiotemporal component overlap is less 
of an issue (for detailed discussion, see Wang & Kuperberg, 2023, Study 
2, Discussion). 

3.4.6. Effect of anticipatory orthographic overlap on pseudowords 
In addition to showing an anticipatory orthographic overlap effect on 

real words, Laszlo and Federmeier (2009) demonstrated the same effect 
on pseudowords; that is, the N400 was smaller in response to pseudo-
words that shared letters with an expected word (e.g. *WUSH) than to 
unrelated pseudowords that were matched on orthographic neighbor-
hood size (e.g. *CLAF). To demonstrate this effect, the authors devel-
oped a set of stimuli that allowed them to cross Orthographic Overlap 

(orthographically overlapping vs. unrelated) and Lexical Status (word, 
pseudoword), and match all four conditions on orthographic neighbor-
hood size. 

For our simulations, following Laszlo and Federmeier (2009), we 
developed a set of 400 real word and 400 matched pseudoword stimuli 
from our 1579-word lexicon. We began with a set of 400 “base-words”, 
and, for each of these base words, we constructed a quadruplet of items, 
thereby setting up a 2 × 2 design that crossed Orthographic Overlap of 
the critical item with the expected base word (orthographically over-
lapping, unrelated) and Lexical Status (word, pseudoword), while match-
ing items across the four conditions on orthographic neighborhood size. 
First, for each base-word (WISH), we selected a real word (DISH) and a 
pseudoword (*WUSH) that overlapped with it in three letter positions, 
and that was matched to it on orthographic neighborhood size (mean 
ONsize across conditions: 6.71, SD: 3.58). Second, to ensure that each 
item appeared in both the orthographically overlapping and the unrelated 
conditions, we symmetrically paired each base-word (WISH) with 
another base-word (CLAW) that was of the same orthographic neigh-
borhood size, with the restriction that neither base-word overlapped at 
any letter position with the other’s word or pseudoword orthographic 
neighbor (DISH/CLAW or *WUSH/*CLAF). This yielded 400 items in 
each of the four conditions: (a) orthographically overlapping word (e.g. 
DISH), (b) unrelated word (e.g. CLAW), (c) orthographically overlapping 
pseudoword (e.g. *WUSH), and (d) unrelated pseudoword (e.g. *CLAF). 

After first pre-activating the model with the base word (WISH, 99% 
probability) for 20 iterations, we then presented the model with each of 
the four possible continuations (DISH, *WUSH, CLAW, *CLAF) in each 
quadruplet, each for 20 iterations. As shown in Fig. 8B, just as for the 
real word stimuli, unexpected orthographically overlapping pseudowords 
(*WUSH) produced a lexico-semantic prediction error that was smaller 
than that produced by the unexpected unrelated pseudowords (*CLAF) 
but larger than that produced by the expected words (WISH). 

A linear mixed-effects model that crossed Orthographic Overlap 
(orthographically overlapping, unrelated) and Lexical Status (word, pseu-
doword) confirmed a main effect of Orthographic Overlap (b = − 87.75, t 
= − 119.58, p < .001). Indeed, the effect on pseudowords was even 
larger than that on words (Lexical Status x Orthographic Overlap: b =
20.39, t = 27.80, p < .001; note that Laszlo & Federmeier, 2009 found 
that the effect of Orthographic Overlap was the same on words and 
pseudowords). Similar to the effect on real words, the simulated N400 
produced by unexpected orthographically overlapping pseudowords also 
had a more prolonged time course than that produced by the unexpected 
unrelated pseudowords, see Fig. 8B and Discussion section. 

Finally, consistent with the simulations reported in Section 1.2, we 
saw a main effect of Lexical Status (pseudowords > words, b = − 13.42, t 
= 18.29, p < .001) because the model was unable to settle on a single 
lexico-semantic state that could explain the bottom-up pseudoword 
input, resulting in a larger lexico-semantic prediction error overall. 

3.5. Interactions between lexical variables and (a) repetition priming and 
(b) lexical probability 

In Section 1, we described simulations of the effects of several lexical 
variables on the N400 produced by words presented in isolation, and in 
Sections 2 and 3, we described simulations of priming and contextual 
effects, respectively. There is also empirical evidence that the effects of 
lexical variables on the N400 can be modulated by both repetition 
priming and contextual predictability. For example, in priming para-
digms, the effects of frequency and semantic richness/concreteness are 
reduced on repeated relative to non-repeated targets (Repetition x Fre-
quency: Rugg, 1990; Repetition x Richness/Concreteness: Rabovsky, 
Sommer, & Abdel Rahman, 2012a; Kounios & Holcomb, 1994). Simi-
larly, during sentence comprehension, the effects of frequency and se-
mantic richness/concreteness are smaller on predictable words than on 
unpredictable words (Probability x Frequency: Dambacher, Kliegl, 
Hofmann, & Jacobs, 2006; Probability x Concreteness: Holcomb et al., 
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1999). 
Currently, it is less clear how contextual factors influence the 

magnitude of the orthographic neighborhood effect on the N400. In 
word lists, Laszlo and Federmeier (2011) described a slightly smaller 
effect of orthographic neighborhood size on repeated than non-repeated 
words, although no statistical tests were reported. However, during 
sentence comprehension, two ERP studies (Payne & Federmeier, 2018; 
Payne, Lee, & Federmeier, 2015) reported that the effect of orthographic 
neighborhood size was the same on words appearing early in sentences 
(less predictable) as on words appearing later in sentences (more pre-
dictable). This suggests that, in contrast to other lexical variables, the 
effect of orthographic neighborhood size may not be overridden by the 
effect of contextual predictability on the N400. However, no previous 
study has orthogonally manipulated lexical probability and ortho-
graphic neighborhood size on the same words in an experimental design. 

Here, we simulated interactions between each of our lexical variables 
— ONsize, Frequency and Richness — with both repetition priming and 
lexical probability, by re-analyzing data from the simulations described 
above. 

3.5.1. Interactions between lexical variables and repetition priming 
In Fig. 9 (top row), we show the effects of ONsize, Frequency and 

Richness on the magnitude of lexico-semantic prediction error produced 
by repeated versus non-repeated target words in our repetition priming 
simulations. In all three cases, the effects of each of these lexical vari-
ables appeared to be smaller on the repeated than the non-repeated tar-
gets. A linear mixed effects model that included both main effects 
(Repetition, ONsize, Frequency and Richness) as well as three interac-
tion terms (Repetition x ONsize, Repetition x Frequency, and Repetition 
x Richness) confirmed main effects of Repetition (b = − 125.52, t =
− 232.81, p < .001) as well as each of the three lexical variables (ONsize: 
b = 15.37, t = 28.47, p < .001; Frequency: b = − 1.62, t = − 3.00, p =
.003; Richness: b = 6.46, t = 11.95, p < .001). Critically, it also revealed 
interactions between Repetition and all three lexical variables (Repeti-
tion x ONsize: b = − 15.13, t = − 28.02, p < .001; Repetition x Frequency: 
b = 1.29, t = 2.39, p = .017; Repetition x Richness: b = − 3.22, t = − 5.96, 
p < .001), which, in all cases, were driven by smaller effects on repeated 
than non-repeated words (ONsize: 99% reduction, Frequency: 89% 
reduction, Richness: 67% reduction). 

3.5.2. Interactions between lexical variables and lexical probability 
In Fig. 9 (bottom row), we show the effects of the same three lexical 

variables on the magnitude of lexico-semantic prediction error produced 
by highly expected (99%) and unexpected (0.06%) words. The effects of 

each of these lexical variables appeared to be smaller on the expected 
than the unexpected critical words. Again, this was confirmed by a linear 
mixed effects model that included all four main effects (Probability, 
ONsize, Frequency, and Richness) and three interaction terms (Proba-
bility x ONsize, Probability x Frequency, and Probability x Richness). In 
addition to confirming main effects of Probability (b = − 94.35, t =
− 352.47, p < .001) and each of the three lexical variables (ONsize: b =
18.79, t = 49.58, p < .001; Frequency: b = − 2.73, t = − 7.19, p < .001; 
Richness: b = 5.25, t = 13.84, p < .001), this analysis revealed in-
teractions between Probability and each lexical variable (Probability x 
ONsize: b = − 11.53, t = − 43.00, p < .001; Probability x Frequency: b =
1.08, t = 4.03, p < .001; Probability x Richness: b = − 3.11, t = − 11.58, p 
< .001). In all cases, these interactions arose because the effect of each 
lexical variable was smaller when the word was predictable than when it 
was unpredictable (ONsize: 96% reduction, Frequency: 73% reduction, 
Richness: 94% reduction). 

These under-additive interactions receive a straightforward inter-
pretation within our predictive coding framework. Generally, an input 
that is repeated or expected will produce minimal prediction error, 
limiting the influence its lexical characteristics can have relative to the 
non-repeated or unexpected conditions, giving rise to an interaction. 

Just as for words presented in isolation (see Section 1), in the non- 
repeated and unexpected conditions, higher frequency words pro-
duced a smaller lexico-semantic prediction error than lower frequency 
words because the stronger feedback weights allowed for the generation 
of more accurate predictions. In the case of repeated or highly predict-
able targets, however, this default prior was overridden, and so the 
magnitude of lexico-semantic prediction error was small, regardless of 
frequency. Similarly, the interactions with Richness arose because the 
additional unpredicted lexico-semantic information (i.e., lexico- 
semantic prediction error) carried by words with many (versus few) 
semantic features was reduced when these representations were pre- 
activated. Finally, the effect of orthographic neighborhood size was 
reduced for both repeated and expected words. This is because in these 
conditions, top-down reconstructions suppressed the prediction error 
produced by co-activated lexical state units and their associated se-
mantic features. 

4. Discussion 

Language comprehension can be understood as probabilistic infer-
ence — the process of inferring internal states that underlie observed 
linguistic inputs (Chater, Crocker, & Pickering, 1998; Kuperberg & 
Jaeger, 2016; Levy, 2008; Narayanan & Jurafsky, 2002; Norris, 2006). 

Fig. 8. Effect of anticipatory orthographic overlap on the time course of lexico-semantic prediction error. A. Effect of anticipatory orthographic overlap on words. 
Lexico-semantic prediction error was largest to the Unexpected unrelated words (CLAW, Unrel. Word), smaller to the unexpected orthographically overlapping words 
(DISH, Overlap. Word) and smallest to expected words (WISH, Exp. Word). B. Effect of anticipatory orthographic overlap on pseudowords. Lexico-semantic prediction 
error was largest to the Unexpected unrelated pseudowords (*CLAF, Unrel. Pseudo.), smaller to the unexpected orthographically overlapping pseudowords (*WUSH, 
Overlap Pseudo.) and smallest to expected words (WISH, Exp. Word). 
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Predictive coding refers to a particular architecture and optimization 
algorithm that approximates this inferential process by actively gener-
ating top-down predictions and passing up unpredicted information — 
prediction error — to update internal states until they explain the 
bottom-up input and prediction error is minimized. Here, we show, for 
the first time, that the N400 ERP component can be simulated as the 
total lexical and semantic prediction error produced as predictive coding 
infers the meaning of incoming words from their orthographic forms. 
Using a predictive coding model with an architecture and algorithm that 
was initially developed to simulate a variety of phenomena in vision 
(Rao & Ballard, 1999; Spratling, 2013; Spratling, 2014), we were able to 
reproduce a wide range of lexical, priming and contextual effects in the 
N400 literature. We further show that predictive coding provides a 
biologically plausible link to neural activity, and a natural explanation 
for the temporal dynamics of the N400. Our findings therefore raise the 
possibly that predictive coding is used to implement language compre-
hension in the brain, and that the production of lexico-semantic pre-
diction error (the N400) plays a key role in this process. 

4.1. Predictive coding provides a plausible, functional link to evoked 
activity and can explain the rise-and-fall morphology of the N400 

The central functional role that prediction error plays in inference, as 
well as its natural biologically plausible link with neural activity dis-
tinguishes predictive coding from previous models that have also 
simulated the N400 as a difference value. Specifically, two previous 
models have also operationalized the N400 as a “prediction error” — the 
difference between the current semantic state and an ideal target vector 
(Rabovsky & McRae, 2014), or between a word input vector and the 
model’s prior lexical prediction (Fitz & Chang, 2019). However, in both 
these models, the error was calculated outside the model’s architecture, 
and so there was no direct link between these difference values and 
ongoing neural activity. Two other models operationalized the N400 as 
an implicit “change of state” induced by an input — the difference in 
activity between the state of the model from before until after the input 
is encountered (Brouwer et al., 2017; Rabovsky et al., 2018). However, 
it is unclear why a larger implicit change in state would produce a larger 

Fig. 9. Interaction between lexical variables and repetition priming (top row), and lexical probability (bottom row). In all bar charts, the y-axis shows the average 
estimate of the slope (i.e., the beta value) obtained by regressing ONsize, Frequency and Richness on the lexico-semantic prediction error. Error bars indicate ±1 
standard error of the mean. The effects of all three lexical variables on the magnitude of lexico-semantic prediction error were reduced in the repeated (vs. non- 
repeated) conditions, and in the high (vs. low) probability conditions. The full time courses of all effects on the simulated N400 are shown in Supplementary 
Materials Fig. 4. 
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evoked response. Indeed, to simulate the N400, the difference between 
the two states was calculated externally by the modeler, rather than 
being produced by the model itself. In addition, this difference value 
played no functional role in language comprehension (although it was 
posited to play a role in learning Rabovsky et al., 2018, see Future 
Directions). 

In predictive coding, the causal role that prediction error plays in 
comprehension is transparent: At each level of representation, predic-
tion error serves as an signal for updating states at the level above. In 
addition, its biological linking function is clear and intuitive: Prediction 
error is computed and stored within dedicated error units whose indi-
vidual activity sum to produce the N400. On the assumption that the 
activation of error units simulates the increased firing of error- 
computing units in the brain, an increase in lexico-semantic prediction 
error should produce more post-synaptic activity and a larger evoked 
N400 response at the scalp surface. 

Together, the functional role of prediction error in inference and its 
direct link to neural activity allowed us to simulate the rise-and-fall time 
course of the N400. Only one previous model has successfully simulated 
the morphology of the N400 (Cheyette & Plaut, 2017; Laszlo & Arm-
strong, 2014; Laszlo & Plaut, 2012). In that model, instead of being 
operationalized as a difference value, the N400 was operationalized 
simply as the total activity produced by a semantic layer. By incorpo-
rating several neurobiological constraints into the model’s architecture, 
the authors were able to show that this semantic activity exhibited 
similar dynamics to the actual N400.6 In predictive coding, the time 
course of the simulated N400 emerges simply as a consequence of pre-
diction error serving as an update signal in the optimization algorithm 
(see also Friston, 2005 for more general discussion). Specifically, when 
new unpredicted orthographic input is presented, the model’s states fail 
to produce accurate predictions/reconstructions, resulting in a rise in 
lexico-semantic prediction error, explaining the rise in N400 amplitude. 
Then, as this error is used to update these higher-level states, they 
converge to stable values, producing more accurate top-down pre-
dictions that suppress lexico-semantic prediction error, resulting in the 
fall in N400 amplitude. 

4.2. A single measure –– lexico-semantic prediction error –– can capture 
lexical, priming and broader effects of context on the N400 

The multiplicity of factors that can affect the amplitude of the N400 
has raised questions about whether this ERP component can be under-
stood as a univariate error signal (Federmeier, 2022). Our model tackles 
this challenge directly. We demonstrate that lexical, priming and higher- 
level contextual effects on the N400, as well as their interactions, can be 
captured by a single dependent measure: lexico-semantic prediction 
error.7 

4.2.1. Simulations of word-level phenomena and priming 
Similar to previous word-level models, predictive coding was able to 

explain the sensitivity of the N400 to various lexical characteristics 
when words were presented in isolation, including the effects of fre-
quency, semantic richness and orthographic neighborhood size. Also 
similar to previous word-level and some sentence-level models, our 
model was able to explain why the amplitude of the N400 is attenuated 
when words are repeated or semantically primed (see Table 1). 

Notably, our model was able to simulate effects on the N400 not only 
on real words, but also on pseudowords, which thus far have only been 
successfully simulated by Laszlo and Plaut (2012). Similar to Laszlo and 
Plaut (2012), and mirroring the empirical data (Heilbron et al., 2022; 
Laszlo & Federmeier, 2011), our simulations showed that the effect of 
orthographic neighborhood size on pseudoword letter strings (*W-E-E- 
N) is similar to that on words. This is because, as originally discussed by 
Laszlo and Federmeier (2011), the co-activation of orthographic 
neighbors will result in the activation of their associated semantic fea-
tures, regardless of whether the eliciting stimulus is a word or a non- 
word. In our model, co-activating a larger group of neighbors resulted 
in a greater lexico-semantic prediction error. 

In addition, our model was able to simulate, for the first time, the 
larger N400 produced by pseudowords than by words (cf. Bentin, 1987), 
even when orthographic neighborhood size is held constant (for 
empirical findings, see Heilbron et al., 2022; Meade et al., 2018; Braun 
et al., 2006; but see Laszlo & Federmeier, 2011). In our model, the 
reason for this is that pseudoword string inputs (e.g., *W-E-E-N) acti-
vated multiple lexical units in parallel (e.g. weed, teen, wren etc.), and, 
unlike for real word inputs, the model did not converge on a single 
representation, preventing it from fully suppressing the lexico-semantic 
prediction error. 

4.2.2. Simulations of broader contextual effects through top-down 
prediction 

Similar to previous sentence-level models, our model was able to 
simulate several effects of broader context on the N400. These included 
the graded effects of lexical predictability (Kutas & Hillyard, 1984; 
DeLong et al., 2005; simulated by Rabovsky et al., 2018; Fitz & Chang, 
2019; see also Brouwer et al., 2017), and the null effect of contextual 
constraint over and above lexical predictability (Kutas & Hillyard, 1984; 
Federmeier et al., 2007; simulated by Rabovsky et al., 2018 and by Fitz 
& Chang, 2019). We also simulated the anticipatory semantic overlap 
effect (Federmeier & Kutas, 1999; Kutas & Hillyard, 1984), which has 
previously only been simulated by Rabovsky et al., 2018). Finally, we 
also simulated contextual effects that have not yet been reported in 
previous models, including the effect of constraint on the anticipatory 
semantic overlap effect (empirical findings: Federmeier & Kutas, 1999; 
Ito et al., 2016), and, most notably, the effect of anticipatory ortho-
graphic overlap on both words (empirical findings: Laszlo & Federmeier, 
2009; Ito et al., 2016; DeLong et al., 2019) and pseudowords (empirical 
findings: Laszlo & Federmeier, 2009). 

Of note, the approach that we took to model these broader effects of 
context was different from that taken by previous models of the N400. In 
these previous models, a higher-level representation of the context was 
computed from the word sequence encountered thus far. In Fitz and 
Chang (2019)’s model, this contextual representation enabled next- 
word prediction, and the attenuation of the N400 to expected inputs 
was simulated as a reduced lexical prediction error. However, as noted 
earlier, this error was computed outside the model itself. In the change- 
of-state models by Rabovsky et al., 2018 and Brouwer et al., 2017, this 
contextual representation implicitly encoded an event, which carried 
information about upcoming expected semantic features. Rabovsky 
et al. (2018) showed that, as a consequence of these implicit semantic 
predictions, the shift in state at the event-level layer (the simulated 
N400 effect) was smaller to lexically expected than unexpected inputs. 
The authors further showed that these implicit semantic predictions 
could explain why the N400 was also smaller to lexically unexpected but 

6 We note, however, that not all architectural assumptions of this model were 
biologically motivated (see Nour Eddine et al., 2022, pages 138–140 for dis-
cussion). We also note that the use of total semantic activity (instead of a dif-
ference value) to simulate the N400 led to certain challenges in modeling 
priming effects. Specifically, if the N400 simply reflected total semantic activ-
ity, then primed words should generate a larger N400 response than unprimed 
words. To solve this problem, the authors implemented a decay-driven inhibi-
tion mechanism. However, while this allowed them to successfully simulate the 
priming effect as a smaller amplitude N400 (Bentin et al., 1985; Rugg, 1985), 
instead of facilitating the processing of primed targets, this inhibition essen-
tially interfered with access to their semantic features (see Nour Eddine et al., 
2022, page 141 for discussion).  

7 As we discuss below under Future Directions, prediction error generated at 
a higher event level of representation may additionally contribute to the larger 
N400 generated by highly implausible/anomalous words, relative to unpre-
dictable but plausible words (see Wang et al., 2023). 
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semantically overlapping inputs than to unexpected unrelated inputs, i. 
e. the anticipatory semantic overlap effect. Finally, in Brouwer et al.’s 
model (Brouwer & Crocker, 2017), the N400 was simulated as a shift 
within a lower “semantic retrieval" layer that received input from the 
higher event-level layer. However, note that even when the input was 
expected, it induced a relatively large shift in this layer (see Nour Eddine 
et al., 2022, page 150, for discussion). 

Several qualitative psycholinguistic theories of predictive language 
comprehension, however, have proposed that prediction goes beyond 
implicitly anticipating upcoming semantic features. These frameworks 
posit that implicitly predicted semantic information is actively propa-
gated down the linguistic hierarchy in a top-down fashion (see Kuper-
berg & Jaeger, 2016, Section 3, pp. 39–45). Thus, according to these 
theories, the attenuation of the N400 is not only driven by the overlap 
between an event’s predicted semantic predictions and the semantic 
features of the bottom-up input, which facilitates the mapping of the 
incoming word’s semantic features on to a prior event-level represen-
tation, but also by overlap at the lexical level, i.e. facilitation of the 
mapping between the incoming word’s lexical representation and these 
pre-activated semantic features (see DeLong et al., 2005; Federmeier, 
2007; Lau et al., 2008). This top-down lexico-semantic facilitation account 
receives support from recent MEG findings showing that the effects of 
contextual predictability on the N400 in plausible sentences selectively 
localizes to regions that support lexico-semantic processing within the 
left temporal cortex (Wang, Nour Eddine, Brothers, Jensen, & Kuper-
berg, 2024), as opposed to more widespread regions across the left lat-
eralized language network (including higher-level regions that encode 
event-level information over a longer time scale). 

In our simulations, the predictive coding algorithm implemented 
precisely the type of top-down prediction mechanisms that allowed for 
top-down lexico-semantic facilitation. Before presenting the bottom-up 
input, a probability distribution of predicted inputs at the highest con-
ceptual layer of the model’s hierarchy led to the pre-activation of ex-
pected semantic features within the semantic state units — semantic pre- 
activation (although, as discussed under Future Directions, because our 
model did not directly infer a higher-level event-level from sequential 
inputs, we provided this input externally). Critically, the feedback 
connections between the semantic state units and the bottom-up lexical 
error units additionally allowed these pre-activated semantic states to 
generate top-down lexical predictions (reconstructions) that suppressed 
the lexical prediction error produced by expected bottom-up inputs as 
they became available (see Supplementary Fig. 3), leading to lexico-se-
mantic facilitation.8 Moreover, just as originally posited by Federmeier 
and Kutas (1999), the same top-down lexical reconstruction mechanism 
was able to explain why lexical-level prediction error was attenuated to 
inputs that were lexically unexpected but shared semantic features with 
expected inputs (the anticipatory semantic overlap effect: They wanted 
the hotel to look more like a tropical resort. So along the driveway, they 

planted rows of pines < tulips; expected: palms). 
Of most theoretical significance, the top-down propagation of pre-

dictions down the linguistic hierarchy allowed us, for the first time, to 
simulate the anticipatory orthographic overlap effect. This describes the 
attenuation of the N400 to unexpected inputs that share orthographic 
features with highly expected continuations — both real words (e.g. 
“The genie granted his third and final...” expected: WISH; DISH < CLAW; 
Laszlo & Federmeier, 2009; Ito et al., 2016; DeLong et al., 2019) and 
pseudowords (*WUSH < CLAW: Laszlo & Federmeier, 2009). 

Crucially, to explain this effect, it is necessary not only to pre- 
activate semantic features and generate lexical reconstructions that 
suppress lexical prediction error, but also to pre-activate lexical features 
and generate orthographic reconstructions that suppress orthographic 
prediction error. Facilitation at the lexical-orthographic interface may 
not occur under all reading conditions (e.g. Nieuwland, 2019; Nieuw-
land et al., 2018). However, there is clear evidence that predictions at 
the lexico-orthographic interface can be generated in strongly con-
straining contexts (Wang, Brothers, Jensen, & Kuperberg, 2023), 
particularly when reading relatively slowly (Ito et al., 2016), and/or 
when the broader experimental environment encourages top-down 
prediction (e.g. a high proportion of highly predictable sentences, see 
DeLong, Chan, & Kutas, 2021). These effects cannot easily be explained 
by previous sentence-level models of the N400, which lack the necessary 
top-down feedback connections between lexical representation and 
orthographic features. They can, however, be explained by predictive 
coding, which provides a mechanism that allows anticipated informa-
tion to be propagated further down the hierarchy. Specifically, in a 
strongly constraining context, the top-down lexical-level reconstructions 
computed two iterations back will induce a top-down lexical bias that 
pre-activates lexical state units corresponding to the expected input 
(wish) before the bottom-up input becomes available. Then, as the 
lexically unexpected orthographically overlapping input (dish) becomes 
available, these pre-activated lexical states generate orthographic re-
constructions that suppress the orthographic prediction error, which in 
turn, results in a smaller prediction error at the lexical and semantic 
levels (and therefore a smaller simulated N400). 

Of course, predictive coding is not the only architecture that allows 
for the top-down propagation of information down a representational 
hierarchy. For example, feedback connections across hierarchically 
organized linguistic representations are also incorporated in classic 
Interactive Activation and Competition (IAC) models of visual and 
spoken word recognition (Chen & Mirman, 2012; McClelland & Elman, 
1986; McClelland & Rumelhart, 1981). However, because IAC archi-
tectures incorporate lateral inhibitory connections between lexical 
units, they would not be able to simulate some of the contextual effects 
that we successfully simulated here using predictive coding. 

For example, consider how the anticipatory orthographic overlap 
effect might be modeled in an interactive-activation setting: In a 
strongly constraining context, the top-down pre-activation of the lexical 
representation of the expected word (wish) would immediately begin to 
inhibit the lexical representations of other words, regardless whether 
they are orthographically related or unrelated to the expected lexical 
item (e.g. dish or claw). Therefore, if an unexpected orthographically 
overlapping word is subsequently encountered (e.g. “dish”), its lexical 
representation (dish) would initially be just as difficult to access as the 
lexical representation of an unexpected unrelated input (claw). This 
would predict no difference in the N400 between these two conditions 
(i.e. dish = claw), contrary to the empirical findings (dish < claw). 
Indeed, at later stages of processing, IAC architectures would predict a 
competitive interference effect, with even more difficulty in settling on 
the lexical representation of an unexpected orthographically over-
lapping input than an unexpected unrelated input (dish > claw). This is 
because when the unexpected orthographically overlapping target 
(“dish”) is encountered, it would not only activate its own lexical rep-
resentation (dish) but it would also provide further activation to its 
neighbor — the incorrectly predicted lexical item (wish). This would 

8 Note that this implies a functional distinction between semantic pre-activa-
tion (the pre-activation of expected semantic states before new bottom-up input 
becomes available to the semantic level) and top-down lexico-semantic facilitation 
(the facilitated mapping of expected lexical inputs on to these pre-activated 
semantic states). In our predictive coding model, semantic pre-activation was 
induced by the top-down bias term, based on reconstructions from the higher 
conceptual level that were computed two iterations back. Top-down lexico- 
semantic facilitation occurred both as a consequence of this top-down semantic 
bias (semantic pre-activation) and the suppression of lexical prediction error by 
top-down lexical reconstructions that were computed one iteration back. This 
distinction between two types of top-down information computed by the pre-
dictive coding algorithm — the top-down bias and the top-down re-
constructions — is important because it implies that processing of a bottom-up 
input can be facilitated at a lower level of representation (through the sup-
pression of prediction error by top-down reconstructions), even if the state units 
at this lower level have not yet been pre-activated (through the top-down bias 
term) before the bottom-up input becomes available. 
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result in more competitive inhibition and more difficulty settling on the 
unexpected orthographically overlapping target, dish, than an unex-
pected unrelated target, claw (see Laszlo & Federmeier, 2009, page 
334–335 for discussion).9 

In contrast, in predictive coding, there are no lateral lexical-level 
inhibitory connections amongst state units, and so there is no direct 
competition amongst activated lexical items. Instead, as the unexpected 
orthographically overlapping input (“dish”) appears, the pre-activated 
lexical state units (wish) generate reconstructions (W-I-S-H) that sup-
press the orthographic prediction error produced by the three over-
lapping orthographic units, (I, S, and H). As a result, only the 
unreconstructed part of the input (D from D-I-S-H) passes up to the 
lexical and semantic levels. This small orthographic prediction error, in 
turn, resulted in a smaller prediction error at these levels too, i.e. a 
smaller N400. 

Notably, our simulations showed that even though unexpected 
orthographically overlapping inputs produced a smaller lexico-semantic 
prediction error, they still took longer to converge on their correct lexical 
and semantic state representation, similar to what would be expected in 
an IAC framework. However, instead of being driven by mutual inhi-
bition amongst activated lexical units, this occurred because the inap-
propriately suppressed orthographic prediction error to “dish” induced 
only a weak update in lexical and semantic state units on each iteration 
of the algorithm10(in our simulations, this prolonged the time course of 
the lexico-semantic error produced by unexpected orthographically 
overlapping inputs relative to unexpected unrelated inputs, see Fig. 8). 
On the assumption that the time it takes for a model to settle on an in-
put’s correct lexical representation determines behavioral response 
times, then predictive coding makes the interesting prediction that when 
an input’s form but not its meaning overlaps with that of a pre-activated 
lexical representation, then this should result in an attenuation of the 
N400 response, but longer behavioral response times. We return to the 
idea that below under Future Directions. 

4.2.3. Simulations of interaction between contextual and lexical effects 
The free top-down and bottom-up flow of information across hier-

archical levels also provides a natural explanation for interactions be-
tween contextual predictability and frequency (empirical findings for 
Predictability x Frequency, see Dambacher et al., 2006), and semantic 
richness (Predictability x Richness, see Holcomb et al., 1999) — both 
simulated for the first time here. Mirroring the empirical findings, we 
showed that the effects of frequency and semantic richness were weaker 
when the critical words were contextually predictable. In both cases, 
pre-activation of the state units generated reconstructions that rapidly 

suppressed the production of lexico-semantic prediction error in 
response to expected inputs, regardless of their lexical characteristics. 

Of note, in our simulations, the effects of contextual predictability 
interacted not only with frequency and semantic richness, but also with 
orthographic neighborhood size; that is, the effect of orthographic 
neighborhood size on the simulated N400 was smaller in more pre-
dictable contexts. The empirical data speaking to whether contextual 
predictability interacts with orthographic neighborhood size are less 
clear than for the interactions described above. To our knowledge, no 
previous study has orthogonally manipulated lexical predictability and 
orthographic neighborhood size in a controlled experimental design. 
However, Payne et al. (2015, 2018) compared the effect of orthographic 
neighborhood size on the N400 produced by words appearing later in 
sentences (more predictable) and words appearing earlier in sentences 
(less predictable). In contrast to what we show in the present simula-
tions, these authors reported that the orthographic neighborhood size 
effect on the N400 (high > low) was just as large on more expected 
versus less expected words. 

We suggest that the reason for this discrepancy is that the compre-
henders in Payne et al.’s studies were not generating predictions all the 
way down to the lexical-orthographic interface — a necessary step for 
producing this interaction. Specifically, in our simulations, unexpected 
words with many orthographic neighbors produce a large lexico- 
semantic prediction error and a large N400 because these neighbors 
activated their lexical and semantic state units (just as for words pre-
sented in the absence of a prior context). However, in high constraint 
contexts, the pre-activation of the lexical state units led to the generation 
of orthographic reconstructions that immediately suppressed the 
orthographic prediction error to the expected high neighborhood inputs. 
This, in turn, suppressed the broad activation of lexical neighbors, and 
their corresponding semantic features, resulting in a small lexico- 
semantic prediction error and a small N400 on these expected high 
neighborhood words, thereby explaining why contextual predictability 
interacted with orthographic neighborhood size. However, as discussed 
earlier in relation to the anticipatory orthographic overlap effect, there 
is evidence that top-down lexical-orthographic predictions are not 
routinely generated under all reading conditions (Ito et al., 2016; 
Nieuwland, 2019). In Paynes’ studies (Payne et al., 2015; Payne & 
Federmeier, 2018), the SOA was relatively short (500 ms), and the 
predictive validity of the environment was low (with a high proportion 
of sentences with syntactic prose or completely scrambled), explaining 
why predictability and orthographic neighborhood size did not interact 
on the N400 in their study. On this account, one should see an inter-
action between these two variables under reading conditions that are 
known to encourage the generation of lower-level lexical-orthographic 
predictions (e.g. reading at slower pace; a high predictive validity 

9 It less clear what an IAC architecture would predict for the anticipatory 
semantic overlap effect, where the pre-activation phase is followed by the 
presentation of a lexically unexpected but semantically overlapping input. In 
this case, the target item might also receive lateral inhibition from the pre- 
activated lexical competitor. However, this might be offset to some degree by 
top-down activation from semantic features that are share between the target 
and competitor. As such, one might expect to see some attenuation on the N400 
to lexically unexpected semantically overlapping continuations, relative to 
lexically unexpected semantically unrelated continuations, albeit less promi-
nently than what we observed in our predictive coding simulations (see 
Brothers et al., 2023 for recent discussion).  
10 Note that the eventual selection of the correct lexical item (dish) over the 

pre-activated competitor (wish) also constitutes a type of competition. However, 
instead of competing through lateral inhibition, the two items compete for the 
bottom-up activation induced by the D — the unexplained bottom-up input/ 
orthographic prediction error, which, in this case, is very small. As activity 
eventually rises over the correct target item (dish), it falls over wish. Thus 
predictive coding approximates a type of Bayesian reasoning known as 
“explaining away” (Pearl, 1988; see Spratling, De Meyer, & Kompass, 2009; 
Spratling, 2016a in relation to vision, and Brothers et al., 2023 for recent dis-
cussion in relation to language processing). 
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environment). An important goal for future empirical studies will be to 
test this hypothesis.11 

4.3. Implications 

Taken together, our findings are consistent with the theory that the 
brain uses predictive coding to comprehend language. Of course, the 
present findings do not provide definitive support for this theory: Pre-
vious models have also simulated several of the N400 effects reported 
here. However, as we have discussed, there are several aspects of pre-
dictive coding that make it particularly promising for explaining why 
the N400 has emerged as such a key neural signature of language pro-
cessing. These include: (1) the central functional role that lexico- 
semantic prediction error (the N400) plays in mapping form on to 
meaning; (2) the intuitive and biologically plausible connection to 
neural activity; (3) the ability to explain why and how higher-level in-
formation can be propagated down to lower levels of the linguistic and 
cortical hierarchy, and interact with incoming information without 
competitive inhibition amongst lexical representations, and (4) the 
ability to explain why effects of both context and priming on the N400 
localize to regions of the left temporal cortex that support lexico- 
semantic processing (semantic priming: Nobre & McCarthy, 1995; 
Lau, Weber, Gramfort, Hämäläinen, & Kuperberg, 2016; Lau, Gramfort, 
Hämäläinen, & Kuperberg, 2013; effects of lexical predictability in 
plausible sentences: Wang et al., 2023). 

By showing that the N400 evoked response can be understood as the 
production of lexico-semantic prediction error in a predictive coding 
framework, our findings also directly link the large existing N400 
literature to previous MEG and fMRI studies in speech perception (Blank 
& Davis, 2016; Sohoglu & Davis, 2020), and visual word recognition 
(Price & Devlin, 2011) in which larger neural response to unexpected 
versus expected inputs have been interpreted as prediction error 
generated at lower levels of language hierarchy. 

More generally, our findings link the N400 to the large body of 
research in predictive coding across non-linguistic perceptual and 
cognitive domains (Clark, 2013; Spratling, 2016b). Indeed, our model 
was based directly on models that were originally developed to explain 
low-level visual phenomena (Rao & Ballard, 1999; Spratling, 2012, 
2013, 2014): the basic structure of the predictive coding architecture 
and its connections, as well as the steps of the predictive coding algo-
rithm, were largely unchanged. Thus, by mapping the univariate N400 
evoked response on to a distinct computational element in this 

architecture (error units), and showing that its temporal dynamics can 
be explained by the algorithm’s optimization goal (the minimization of 
prediction error), our findings lend support to the hypothesis that the 
brain employs the same canonical circuit motif (cf. Douglas, Martin, & 
Whitteridge, 1989) to process language as in other perceptual and 
cognitive operations (Aitchison & Lengyel, 2017; Bastos et al., 2012). 
Some evidence for this hypothesis comes from MEG findings suggesting 
that the differential activation of state versus error units by expected and 
unexpected inputs over the course of the predictive coding algorithm 
can account for the dynamics of multivariate brain activity within the 
same 300-500 ms time window (Wang et al., 2024). 

4.4. Limitations and future directions 

The current version of our model has several limitations, opening up 
several potential avenues for future expansion. 

4.4.1. Expanding the hierarchy upwards 
One important limitation is that we provided probabilistic pre-

dictions externally to a simplified conceptual layer at top of the hier-
archy. In reality, however, this highest-level layer would encode a 
situation model (van Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998) 
that generates probabilistic predictions of upcoming semantic features. 
We conceptualize this situation model as an ongoing high-level inter-
pretation that encodes not only a surface representation of events that 
are inferred from the prior linguistic input, but also knowledge retrieved 
from long-term memory that is specifically relevant to the current 
communicative situation. To incorporate this type of situation model, 
the highest conceptual layer of the model would need to be expanded in 
two main ways. 

First, it would need to incorporate a mechanism for inferring events 
that are based on the full sequence of bottom-up linguistic inputs, 
similar to previous sentence-level models of the N400 (Brouwer et al., 
2017,; Rabovsky et al., 2018; Fitz & Chang, 2019). This would allow us 
to model certain additional sentence-level phenomena, such as the ef-
fects of semantic attraction on unexpected words (Kuperberg, Sitnikova, 
Caplan, & Holcomb, 2003; simulated by Brouwer et al., 2017, and by 
Rabovsky et al., 2018), and the effect of word position within sentences 
(Van Petten & Kutas, 1990, Van Petten & Kutas, 1990; simulated by 
Rabovsky et al., 2018). 

Second, it would need to incorporate a mechanism for inferring the 
current communicative situation or topic under discussion, along with 
its associated schema-relevant real-world and episodic knowledge 
stored within long-term memory (see Franklin, Norman, Ranganath, 
Zacks, & Gershman, 2020 for one modeling approach). This would allow 
us to simulate several additional phenomena on the N400, including 
various discourse-level and pragmatic effects (e.g. Van Berkum, Zwit-
serlood, Hagoort, & Brown, 2003); Kuperberg, Paczynski, & Ditman, 
2011; Van Berkum, Van den Brink, Tesink, Kos, & Hagoort, 2008). 

Finally, expanding the highest conceptual layer may allow us to 
simulate the effects of semantic implausibility/anomaly on the N400 
(Kuperberg et al., 2020; Nieuwland et al., 2020). In contrast to the effect 
of lexical probability on the N400, which, in plausible sentences, lo-
calizes to regions of the left temporal cortex that support lexico-semantic 
processing, the anomaly effect on the N400 additionally localizes to the 
left inferior frontal cortex at a higher level of the cortical hierarchy 
(Wang, Schoot, et al., 2023). It has been suggested that this additional 
evoked response reflects the generation of a higher-level prediction 
error within the N400 time window when the newly inferred highly 
implausible or anomalous event cannot be explained by the model’s 
generative parameters (Wang, Brothers, et al., 2023; and see Rao & 
Ballard, 1999 for analogous discussion in the visual system). The 
incorporation of error units at the highest layer of the hierarchy would 
allow us to test this hypothesis. 

11 If one does see an interaction between Contextual predictability and ONSize 
under experimental conditions that encourage top-down lexical-orthographic 
prediction, then this would provide evidence (a) that the effect of ONsize 
indeed stems from activity at the lexico-orthographic interface, and (b) that the 
attenuation of this effect on expected words is indeed driven by the top-down 
suppression of orthographic prediction error by orthographic reconstructions, 
as shown by our simulations. If, however, if it turns out that there is no inter-
action between these variables under these conditions, i.e. that the effect of 
ONSize is impervious to contextual predictability, then this would provide 
evidence for an alternative account of the effect of ONSize on the N400: that, 
instead of being driven by activity at the lexico-orthographic interface, it is 
driven by differences in how high ONsize and low ONsize words are encoded at 
a lower sublexical orthographic level of representation. For example, in a 
bigram-based coding scheme where each orthographic unit represents one 
bigram, words with smaller orthographic neighborhood sizes (e.g., kiwi) would 
require fewer bigrams to be uniquely represented, requiring fewer state units to 
be activated than words with larger neighborhood sizes (e.g. core). Sublexical 
representations are even more unlikely to be pre-activated during routine 
natural language comprehension. Therefore, the orthographic neighborhood 
size effect would be relatively invariant to top-down factors like contextual 
predictability. If this turns out to be the case, expansions of the predictive 
coding hierarchy down to include more realistic sublexical representations 
would be necessary to test this hypothesis, as we discuss further below. 
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4.4.2. Expanding the hierarchy downwards 
A second limitation of the current model is that we used a simplified 

orthographic code that directly mapped groups of letters onto lexical 
entries. In reality, however, there is a much deeper hierarchy of repre-
sentations that lie between the model’s inputs and the lexical and se-
mantic layers, including early visual representations as well as 
sublexical orthographic representations (bigrams and trigrams; Vinckier 
et al., 2007; Dehaene, Cohen, Sigman, & Vinckier, 2005). Moreover, 
written word recognition does not only rely on direct mappings between 
orthography and semantics, but also on closely interacting lexical and 
sublexical representations that map indirectly on to semantics via 
phonology (Grainger & Holcomb, 2009; Harm & Seidenberg, 2004; 
Seidenberg & McClelland, 1989). We suggest that expanding the current 
predictive coding hierarchy downwards to include these lower-level 
representations would offer several advantages.12 

First, it might help stabilize the peak latency of the simulated N400. 
In the empirical literature, the peak latency of the N400 priming effect 
and the lexical predictability effect is very stable (Federmeier & Laszlo, 
2009). In contrast, in our simulations, the peak latency of these effects 
varied with the magnitude of lexico-semantic prediction error (the 
smaller the simulated N400, the earlier its peak latency). We suggest 
that this discrepancy may, in part, be due to the artificially truncated 
pathway between the input and the target lexical and semantic repre-
sentations. Because the complete set of letters directly activated lexical 
state units, there was essentially no limit to how rapidly lexico-semantic 
states could converge and suppress prediction error. In contrast, during 
natural language comprehension, the deeper hierarchy of lower-level 
representations likely imposes a structural constraint on how quickly 
information reaches the higher lexical and semantic layers. Indeed, as 
shown in the Supplementary Materials, prediction error generated at the 
higher semantic level appeared to exhibit greater stability in terms of its 
latency compared to that generated at lower levels. 

A second advantage of extending the model hierarchy downwards is 
that it would allow us to simulate a number of additional ERP effects 
that we were not able to simulate using the slot-based coding scheme 
used in current model. We adopted this code because of its simplicity 
and widespread use (Grainger & Jacobs, 1996; Harm & Seidenberg, 
1999; McClelland & Rumelhart, 1981; Zorzi, Houghton, & Butterworth, 
1998). However, there are known issues with this type of coding scheme 
(see Davis & Bowers, 2006), and the incorporation of more realistic 
sublexical bigram and trigram representations would enable us to 
simulate effects such as the attenuation of the N400 to targets preceded 
by primes with transposed letters versus control primes (leomn - lemon 
vs. leuzn - lemon, see Grainger, 2008; Grainger, Kiyonaga, & Holcomb, 
2006; Carreiras, Vergara, & Perea, 2009; Meade, Mahnich, Holcomb, & 
Grainger, 2021). Additionally, expanding the model to include phono-
logical representations that interact with sublexical and lexical entries 
would allow us to simulate the smaller N400 to targets preceded by 
pseudo-homophone primes (brane – brain) versus pseudoword primes 
(brans – brain; Grainger et al., 2006), as well as the effects of phono-
logical neighborhood on written words (Carrasco-Ortiz, Midgley, 
Grainger, & Holcomb, 2017). 

A third advantage of incorporating additional sublexical ortho-
graphic and phonological representations into the model is that it would 
allow us to explore whether predictive coding is also able to explain 

effects on several earlier negative-going ERP components observed 
before the N400 time-window between 150 and 300 ms (Grainger & 
Holcomb, 2009; Kiyonaga et al., 2007). These early ERP components 
have previously been interpreted within the hierarchical interactive 
activation framework as indexing activity at sublexical levels of repre-
sentation (see Grainger & Holcomb, 2009). Within a predictive coding 
framework, they may reflect the generation of prediction errors gener-
ated at lower sublexical levels of the linguistic hierarchy (see Price & 
Devlin, 2011). 

4.4.3. Simulations of behavior 
In the present study, our focus was on simulating the N400 ERP 

response, which we operationalized as lexico-semantic prediction error 
— the total activity produced by lexical and semantic error units on each 
iteration of the algorithm. As we have emphasized, these error units 
work in close conjunction with separate sets of state units that encode the 
bottom-up input, regardless of its predictability. Thus, at the same time 
that error units are producing the transient evoked N400 response, these 
state units are accumulating activity that encodes the lexical identity 
and semantic features of the bottom-up input. This information encoded 
within the state units may play an important role in guiding decision- 
making during behavioral tasks. In current work, we are showing that 
by placing a decision threshold on lexical state activity and examining 
the time (number of iterations) it takes for the algorithm to cross this 
threshold, it is possible to simulate various effects in the behavioral 
literature (Nour Eddine, Brothers, Wang and Kuperberg, 2023). 

Indeed, the separation of state and error units makes predictive 
coding particularly promising for understanding why effects on the 
N400 and behavior often pattern together, but at other times they 
dissociate. For example, in repetition priming, semantic priming, and 
contextual predictability, the smaller the N400, the greater the behav-
ioral facilitation. In predictive coding, this is because, at the same time 
as top-down reconstructions are suppressing lexico-semantic prediction 
error (within error units), the top-down bias provides a head-start for 
state units to converge on the correct expected conceptual and semantic 
representations. In other situations, however, the N400 is attenuated 
even when there is evidence of behavioral interference (e.g. Holcomb 
et al., 2002). As discussed earlier in relation to the anticipatory ortho-
graphic overlap effect, predictive coding can, in principle, account for 
this type of dissociation. For example, if an incorrect lexical state unit is 
pre-activated (via the top-down bias term), and this state does not share 
semantic features with the expected input, then when a target input is 
encountered it will produce top-down orthographic reconstructions that 
suppress orthographic prediction error, meaning that less lexico- 
semantic prediction error will be propagated up the hierarchy. This 
will result in both a smaller N400 and a longer time for state units to 
converge on the correct lexical and semantic representations. We are 
currently carrying out experiments and simulations to directly test this 
hypothesis. 

4.4.4. Learning and adaptation 
Another focus for future research will be to examine the relationship 

between prediction error, comprehension and learning within the pre-
dictive coding framework. The close link between prediction error and 
learning is well documented in both non-linguistic (Rescorla & Wagner, 
1972; Rumelhart, Hinton, & Williams, 1986) and linguistic domains (e. 
g., Chang, Dell, & Bock, 2006; Elman, 1990). This link has also been 
emphasized in previous models of the N400 that proposed that predic-
tion error (Fitz & Chang, 2019; Rabovsky & McRae, 2014) or changes-in- 
state (Rabovsky et al., 2018) are computed for the purpose of down-
stream learning through backpropagation. As noted earlier, in these 
previous models, prediction error played no functional role in compre-
hension, whereas in the current predictive coding model, locally- 
computed prediction error played a crucial role in inference/compre-
hension. This, however, doesn’t imply that the prediction error 
computed during predictive coding isn’t also used for downstream 

12 Another direction for future research would be to construct a predictive 
coding model of spoken language comprehension that takes acoustic inputs, 
and that includes layers encoding phonetic features and phonemes, in addition 
to lexical and semantic representations. This model would allow researchers to 
simulate the N400 generated during spoken language comprehension. It would 
also enable us to simulate the production of lower-level phonemic prediction 
error, which, in previous fMRI and MEG studies, has been hypothesized to drive 
the larger neural response produced by unpredictable versus predictable spoken 
inputs (Blank & Davis, 2016; Sohoglu & Davis, 2020). 
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learning. Indeed, it has been shown that under certain theoretical as-
sumptions, this error converges to the learning signal used for back-
propagation (Millidge, Tschantz, & Buckley, 2020; Song, Lukasiewicz, 
Xu, & Bogacz, 2020; Whittington & Bogacz, 2019). 

In the current implementation of our model, the connection weights 
between the layers were hand-coded rather than trained. This modeling 
choice allowed us to interpret the activity in state and error units, and 
explicitly link them to psycholinguistic representations. However, it 
would be possible to include a weight update step in our current algo-
rithm, allowing the model to use prediction error minimization not only 
to drive shorter-term inference, but also to drive longer-term learning/ 
adaptation, i.e. modifying the generative parameters that define weights 
across levels of representation (Rao & Ballard, 1997; Rao & Ballard, 
1999; Spratling, 2012). Under this scenario, the model would alternate 
between short-term inference (fixing the connection weights and 
updating the state units) and longer-term learning (fixing the state units 
and updating the weights), capturing the idea that language processing 
and language learning/adaptation are closely intertwined throughout 
the lifespan (see Dell & Chang, 2014; Elman, 1990; Kleinschmidt & 
Jaeger, 2015). 

4.4.5. Late positivities 
Finally, it will be important for future models to simulate a set of 

later positive-going ERP components, observed beyond the N400 time 
window between 600 and 1000 ms. Two previous computational models 
have attempted to simulate late positivities (Brouwer et al., 2017; Fitz & 
Chang, 2019), but each has limitations. For example, neither model 
explains why these late positivities are most likely to be produced when 
comprehenders have established a high-level situation model (see 
Kuperberg et al., 2020; Brothers, Wlotko, Warnke, & Kuperberg, 2020 
for empirical evidence). In addition, neither model distinguishes be-
tween two distinct types of late positivities (Kuperberg et al., 2020; Van 
Petten & Luka, 2012). 

The first is a frontally distributed positivity that is produced when 
unexpected inputs can be successfully integrated into the prior context, 
but this involves a large update to the situation model, e.g. when the 
input violates a strong prior prediction (Federmeier et al., 2007; 
Kuperberg et al., 2020; Kutas, 1993), or if it is particularly informative, 
inducing the retrieval of new schema-relevant events from long-term 
memory (e.g. Brothers, Greene, & Kuperberg, 2020; Davenport & 
Coulson, 2011; Thornhill & Van Petten, 2012). In both these situations, 
the updated situation model will produce new top-down reconstructions 
containing residual semantic and lexical information that is not yet 
encoded in lower-level semantic and lexical state units, i.e. top-down 
error. It has been argued that the late frontal positivity indexes the 
generation of this late top-down error (Wang, Brothers, et al., 2023), as 
it is propagated down the generative hierarchy, serving to retroactively 
update the lower-level semantic and lexical state units (via the top-down 
bias term), ensuring that the information is consistent across all levels. 
We are currently carrying out simulations to test this hypothesis. 

The second type of late positivity is a posteriorly distributed 
component, otherwise known as the P600. Late posterior positivities/ 
P600s are produced by syntactic anomalies (e.g., Hagoort, Brown, & 
Groothusen, 1993), orthographic anomalies (e.g., Vissers et al., 2006), 
and highly implausible or semantically anomalous continuations (e.g., 
Münte, Heinze, Matzke, Wieringa, & Johannes, 1998; Kuperberg et al., 
2003; Kuperberg, 2007; van de Meerendonk, Kolk, Chwilla, & Vissers, 
2009). In these situations, the predictive coding algorithm will fail to 
converge (fail to minimize prediction error) within the N400 time 
window, leading to conflict and reprocessing (van de Meerendonk et al., 
2009). It has been recently argued that, during this second stage of 
reprocessing, the P600 tracks the brain’s rising confidence that this 
conflict stemmed from an error within the external input (as opposed to 
an internal processing error), i.e. the brain’s rising confidence that the 
input cannot be used to update the situation model, given the generative 
model’s prior state and parameters (see Kuperberg, Alexander, & 

Brothers, 2024). This type of confidence tracking may play an essential 
role in adapting to future external linguistic errors (e.g., Coulson, King, 
& Kutas, 1998; Hanulikova, van Alphen, van Goch, & Weber, 2012). 

4.5. Conclusion 

Predictive coding offers a simple, interpretable and biologically 
plausible framework to make sense of prediction in language compre-
hension. Our simulations show that lexico-semantic prediction error 
within this framework shares a remarkable range of features with the 
N400 event-related component, from its time course, to its sensitivity to 
top-down and bottom-up variables, and even interactions between these 
variables. By mapping the N400 on to a distinct element within a hier-
archical generative modeling framework (lexico-semantic prediction 
error), we situate this key neural component within the broader context 
of predictive coding research. Most importantly, our findings raise the 
possibility that the brain uses predictive coding to infer meaning from 
the form of words during language comprehension. This paves the way 
towards understanding how specific disruptions of predictive coding 
might give rise to the pathological neural responses observed during 
language processing in neurodevelopmental disorders such as schizo-
phrenia (Brown & Kuperberg, 2015; Fletcher & Frith, 2009). 
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The code to reproduce all simulations and analyses is available on 
GitHub (https://github.com/samer-noureddine/PredictiveCodingMode 
l_N400). 

The supplementary materials can be found at the following link 
(https://osf.io/n4cp6). This includes a more technical description of the 
predictive coding algorithm, weight matrices, hyperparameters, fre-
quency implementation and a derivation of the state update step of the 
algorithm. 
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